
Provably Secure
Cryptographic Hash Functions

Maike Massierer

Supervisors: James Franklin and Richard Buckland

School of Mathematics,

The University of New South Wales.

December 2006

Submitted in partial fulfillment of the requirements of the degree of

Bachelor of Science with Honours

Acknowledgements

The work on this thesis was part of a Study Abroad year at the University of

New South Wales, Sydney. It has been a very valuable academic and personal

experience, and thanks go to the many people who have supported and inspired

me throughout this year.

For the support with the work on this thesis, the greatest thanks go to my super-

visors Jim Franklin and Richard Buckland. To Jim, for his never-ending supply

of time and patience, and for his interest in every aspect of my studies. And to

Richard, for his brilliant ideas and guidance. Also to Roland, my inofficial third

supervisor, who spent enormous amounts of time helping me with all kinds of

smaller and bigger problems.

I would also like to thank Catherine Greenhill for her friendly advice regarding

several graph theory questions.

Thank you to Jim, James, Roland and Tara, who willingly offered to help with

proof-reading the entire document to fix my English, layout, logic and notation.

Lastly, for their loving support and faithful prayers, thanks must go to my family

and friends, and especially to Bec.

Maike Massierer, 13 December 2006

i

Introduction

A hash function is simply a mapping

h : {0, 1}∗ → {0, 1}m

from the set of all binary strings to the set of binary strings of a fixed size. Every

good hash function has the property that two different inputs are very unlikely to

be mapped to the same value.

Hash functions have many applications in computer science, and a particularly

interesting area is cryptography. The main goal of cryptography is to provide three

basic security characteristics of information: confidentiality, integrity and authen-

tication. Confidentiality is the assurance of data privacy. Integrity is the assur-

ance that data has not been altered. Authentication is the process of verifying

an identity. The security of much of our communication today relies on crypto-

graphic protocols that ensure these attributes, and many such protocols use hash

functions as building blocks. However, not every hash function is good enough

to be used in cryptography. In fact, only so-called cryptographic hash functions

that fulfil certain security properties may be used in cryptographic applications

such as digital signatures and pseudo-random number generators. Cryptographic

hash functions must not only have good statistical properties. They must also

withstand serious attack by malicious and powerful attackers who are trying to

invade our privacy.

The design of such cryptographic hash functions is an important but extremely

difficult task. Many have been proposed, but most of them soon turned out to be

too weak to resist attacks. Only two families of hash functions came to be widely

used (namely the MD and SHA families, the most well-known members of which

are MD5 and SHA-1, respectively). Unfortunately, their security relies on heuristic

arguments rather than mathematical proofs. As might be expected, weaknesses

have recently been found in both of them and as a result, there currently exist no

secure and practical cryptographic hash functions. Hence there is little basis for

trust in the applications that use them, and a great need for research into good

cryptographic hash functions.

These recent developments in cryptanalysis have clearly shown that currently

used cryptographic hash functions are not good enough. But research in this

area is not only very important because most existing hashes have been broken.

The problem is not so much that flaws have been found in current designs, but

that their construction often seems ad-hoc and their security cannot be proven.

iii

Information security is too important to be left up to assumptions and luck. What

we really need are hash functions the security of which can be trusted.

Much research is being done in the area of provably secure hash functions

and many promising designs have been proposed, but none of them are practical

enough to be used yet. Speed is especially a problem. Provably secure designs are

not nearly as fast as conventional hash functions, which makes them unpopular.

Also, proofs of security are extremely difficult to create. They rely on assumptions

about the resources and power of possible attackers, and the ideas and definitions

of security are anything but consistent. Many different attack models are in use

and there is no general understanding of how secure is good enough. Maybe there

never can be, since the answer to this question depends on the level of concern.

Still, much research is to be done in finding usable definitions of security properties

and manageable methods to prove them.

The direction in current research is to relate security properties to provably

difficult problems, that is, members of the class of NP-complete problems. If it

can be proven that a certain attack on a given hash function is at least as hard

as solving a well-known NP-complete problem, then that gives a clear indication

of how secure a hash function is against this attack. This might not be the

most satisfactory method of proving security, but it is one that actually works in

practice. In the past twenty years, many hash functions that are secure in this

sense have been constructed and continually improved, and there is hope that they

may soon be able to replace the currently used hash algorithms with questionable

security.

This thesis looks into concepts used to design provably secure cryptographic

hash functions.

Chapter 1 gives a general introduction to cryptographic hash functions by

discussing different security properties and possible attacks on them. It also

gives some motivation for the need of good hash functions by presenting vari-

ous cryptographic applications, and it analyses why the design of cryptographic

hash functions is so difficult.

Chapter 2 discusses the two most commonly used hash functions MD5 and

SHA-1. It presents their algorithms, their security arguments and the recent

ground-breaking attacks on them, followed by a brief discussion of why current

hash functions are not good enough.

Chapter 3 then looks into methods of designing provably secure hash functions,

and Chapter 4 presents a very natural design of a provably secure hash that

illustrates these methods.

Finally, Chapter 5 proposes a new type of provably secure hash function with

a security assumption that makes it easier to design than other provably secure

hash functions. It presents a pioneer design of this kind, based on the graph

theoretical Hamiltonian cycle problem, and a proof of its security.

iv

Contents

Chapter 1 Introduction to Hash Functions 1
1.1 Definition of a Hash Function . 1
1.2 Desired Properties of Cryptographic Hash Functions 2
1.3 Attacks on Cryptographic Hash Functions 4

1.3.1 Brute Force Attacks . 5
1.3.2 Cryptanalytic Attacks . 7
1.3.3 The Adversary . 7

1.4 Applications of Hash Functions 8
1.4.1 Applications of Non-Cryptographic Hash Functions 8
1.4.2 Applications of Cryptographic Hash Functions 8

1.5 Design of Cryptographic Hash Functions 10

Chapter 2 Custom-Designed Hash Functions 13
2.1 MD5 . 13

2.1.1 Terminology and Notation 14
2.1.2 The MD5 Algorithm . 14
2.1.3 Security of MD5 . 16
2.1.4 Attacks on MD5 . 17

2.2 SHA-1 . 18
2.2.1 Terminology and Notation 18
2.2.2 The SHA-1 Algorithm . 18
2.2.3 Security of SHA-1 . 20
2.2.4 Attacks on SHA-1 . 21

2.3 Security of Custom-Designed Hash Functions 22

Chapter 3 Provably Secure Hashing 23
3.1 Types of Provably Secure Hash Functions 23
3.2 NP-Complete Problems . 25

3.2.1 Terminology and Notation 25
3.2.2 Polynomial Time Solvable Problems 27
3.2.3 Polynomial Time Verifiable Problems 27
3.2.4 Formal-Language Theory 28
3.2.5 NP-complete Problems . 29
3.2.6 NP-complete Problems in Cryptography 31

3.3 Domain Extender Algorithms . 33
3.4 Summary . 35

Chapter 4 Universal One-Way Hash Functions 37
4.1 Universal One-Way Hash Functions 37
4.2 The Subset Sum Hash Function 41

v

Chapter 5 A New Preimage Resistant Hash Function 47
5.1 Graph Theory . 48

5.1.1 The Hamiltonian Cycle Problem 49
5.1.2 Random Graphs . 50
5.1.3 Graph Theory and Hashing 51

5.2 The Algorithm HamHash . 51
5.2.1 The Main Idea . 51
5.2.2 Notation . 52
5.2.3 The Function Red . 53
5.2.4 The Function Cyc . 54
5.2.5 The Function Graph . 56
5.2.6 The Algorithm HamHash 58
5.2.7 An Example . 59

5.3 Properties of HamHash . 60
5.3.1 Non-Determinism and Verification 60
5.3.2 Preimage Resistance of HamHash 61
5.3.3 Second Preimage Resistance of HamHash 62
5.3.4 Collision Resistance of HamHash 63
5.3.5 Avalanche Effect in HamHash 64
5.3.6 Surjectivity of HamHash 65
5.3.7 Randomness of HamHash 66
5.3.8 Efficiency of HamHash . 66
5.3.9 Bits of Security of HamHash 67

5.4 Applications of HamHash . 68
5.4.1 Password Storage . 68
5.4.2 Game Solution . 68

5.5 Implementation of HamHash . 68
5.6 Problems and Further Research 71

5.6.1 Digest Size . 71
5.6.2 Reduction Function . 72
5.6.3 Cryptographically Secure Random Number Generation . . 72
5.6.4 Hardness of HamCycle(v) 73
5.6.5 Approximation Algorithms 74
5.6.6 Hash Functions Based on NP-Complete Graph Problems . 74
5.6.7 Applications of Non-Deterministic Hashes and PRHF . . . 74
5.6.8 Stronger Non-Deterministic Hash Functions 74
5.6.9 Another Definition of “Hard” 75

5.7 Conclusion . 75

Conclusion 77

Appendix 79

References 87

vi

Chapter 1

Introduction to Hash Functions

The concept of hashing was apparently first used by Hans Peter Luhn of IBM in

a memo dated 1953 [24]. The term hash, which normally means “to chop and

mix”, came into use about ten years later and seems to be a very good informal

description of what a hash function does: it mixes up the bits of the input and

chops some off to produce a shorter and random-looking output.

More formally speaking, a hash function is simply a function that examines

input data of arbitrary length and produces an output of fixed length called the

hash value. Hash functions may have different properties, depending on their

use. For all applications, it is important that given two different inputs, they are

unlikely to hash to the same value.

There are various applications of hash functions, many of them in computer

science, and a very significant one is cryptography. This thesis focuses on cryp-

tographic hash functions, which are particularly interesting but also very hard to

design, because they must have certain security properties.

This chapter starts by defining (cryptographic) hash functions and their key

properties, and then explains the most common methods of attacking these prop-

erties. It also gives some motivation by discussing the most important applica-

tions, followed by a brief discussion of why it is hard to design such functions.

1.1 Definition of a Hash Function

Notation 1.1.1

For m ∈ N let {0, 1}m denote the set of all bit strings of length m, and {0, 1}∗ =
⋃

m∈N
{0, 1}m the set of all bit strings.

Definition 1.1.2 (hash function)

A hash function h takes an input of arbitrary length and computes an output of

a fixed length m, called the hash value. In cryptography, the input is a message

in the form of a bit string and the output is called a message digest. Hence h

can be written

h : {0, 1}∗ → {0, 1}m.

1

2 Chapter 1. Introduction to Hash Functions

Since a hash function is usually expected to make its input smaller, not bigger,

the size of the input is often required to be greater than or equal to m. Typical

values for m are 128, 160 and 256.

1.2 Desired Properties of Cryptographic Hash Functions

Although the official definition of a hash function only requires it to map its

arbitrary-sized input to a fixed-size output, every good hash function is expected

to produce few hash collisions. Given two inputs, it should be very unlikely

(though obviously not impossible) that they are mapped to the same value. This

property suffices for many applications. However, there are also many applications

that require further properties of the hash functions they use (for applications,

see Section 1.4).

A very interesting area where hash functions find many applications is crypto-

graphy. Cryptography generally ensures the “security” (meaning confidentiality,

authentication, integrity) of certain transactions of communication, and it always

assumes that some malicious entity exists that is trying to “break” the security.

Any method used in cryptography must therefore still achieve the desired secu-

rity under attack. That is also true for the hash functions used in cryptographic

protocols, they must withstand serious attack. To ensure this, it is required that

they satisfy a variety of security properties.

Hash functions used for cryptographic purposes are called cryptographic

hash functions. Since this thesis is only about cryptographic hash functions,

they will from now on simply be referred to as hash functions. Ordinary hash

functions that are used for purposes other than cryptography will be called non-

cryptographic hash functions.

There are three basic properties that cryptographic hash functions may fulfil,

but not every cryptographic hash function must satisfy all of them. While the first

property (preimage resistance) is always required, the other two are only necessary

for some applications in cryptography. These understandings and definitions are

not consistent throughout the literature. The ones chosen here seem to be the be

most common and most useful for the purpose of this thesis.

Definition 1.2.1 (preimage resistance)

A hash function h : {0, 1}∗ → {0, 1}m is called preimage resistant if given a

digest d ∈ {0, 1}m it is hard to find a message (a preimage) M ∈ {0, 1}∗ such that

h(M) = d. This is often also referred to as h is one-way.

Definition 1.2.2 (second preimage resistance)

A hash function h : {0, 1}∗ → {0, 1}m is called second preimage resistant if

given a message M1 ∈ {0, 1}∗ it is hard to find another message M2 ∈ {0, 1}∗ (a

second preimage) such that h(M1) = h(M2).

1.2. Desired Properties of Cryptographic Hash Functions 3

Definition 1.2.3 (collision resistance)

A hash function h : {0, 1}∗ → {0, 1}m is called collision resistant if it is hard

to find two messages M1 and M2 ∈ {0, 1}∗ (with M1 6= M2) such that h(M1) =

h(M2). Say M1 and M2 collide.

Notice that collision resistance is a stronger requirement than second preimage

resistance. In the definition of second preimage resistance, one of the messages

that collide is fixed, whereas with collision resistance, both messages can be chosen

arbitrarily. Therefore if a hash function is collision resistant it is automatically

second preimage resistant, but the converse of this statement is not true.

The big question is what is meant by “hard”. Obviously, preimages and col-

lisions always exist. But it should be hard to produce them on purpose, even

by someone who puts in a great deal of effort. Informally speaking, it should

be impossible to write an algorithm that performs a hard operation efficiently.

For example, even if all the computational power in the world and that of the

foreseeable future and a huge amount of time (e.g. the age of the universe) were

available for computation, there should still be no algorithm that calculates a

preimage for a given hash value. There may exist (and in our case there will

always exist) an algorithm that solves the problem in theory (whereas there are

problems for which it is impossible to write an algorithm which finds a solution,

e.g. the Halting Problem). For example, a preimage to a given hash can always

be found by trying enough different possibilities. But this must not be feasible

in practice, for example because the computational power and time required to

try enough possible preimages to find the right one would exceed the available

resources.

How something like this can be defined more precisely and how it can be

achieved is the most important question in cryptographic theory and the topic of

this thesis. How do we know how hard something is and how hard is hard enough?

How can we be sure something is really as hard as we think it is? Some precise

mathematical definitions are necessary to quantify “hardness”, and mathematical

proofs are highly desirable to give assurance. Chapter 3 makes an effort to shed

some light on these questions.

In addition to the three key properties defined above, there are other properties

that cryptographic hash functions may or should fulfil. These are not as precisely

defined and it is often sufficient to do some analysis or experiments to ensure that

they are satisfied, rather than looking for proofs.

Hash functions are always expected to be efficiently computable. Most

applications require the computation of hash values to be very fast, because many

evaluations of the function must be performed. For cryptographic hash functions

there is often a trade-off between security and speed, and unfortunately many are

willing to sacrifice security for speed.

4 Chapter 1. Introduction to Hash Functions

Hash functions are also deterministic, which means that given a particular

input, the function always computes the same output.

In spite of being deterministic and efficiently computable, cryptographic hash

functions are usually expected to behave like a random function, in that it should

be impossible to predict any output bits given a particular input without actually

applying the function. In fact, it is even desired that adjacent bit strings have

completely different hashes. This is called the avalanche effect and more pre-

cisely stated as follows. The avalanche effect is evident if, when an input to a hash

function is changed slightly, the output changes significantly. In other words, even

when only one bit of the input is flipped, each output bit should flip with prob-

ability one-half. Also, hash functions should always produce a “random-looking”

output.

Two types of cryptographic hash functions are usually distinguished. A hash

function that only has one input is what is often just referred to as hash function

and sometimes called Manipulation Detection Code (MDC). This is the type

of hash function that this thesis is about, so when talking about hash functions

we mean single-input hash functions. But for completeness we mention that there

are also hash functions which take two inputs, one of them a message as before

and the other one a secret key. These functions are called keyed hash functions,

an important subclass of which are Message Authentication Codes (MACs)

(see Section 1.4). Keyed hash functions are sometimes constructed from ordinary

hash functions by concatenating the message with the key to form the input to

an ordinary hash function.

Note that there are also constructions of hash functions where the second

parameter is public. An example of this class are Universal One-Way Hash Func-

tions, which will be discussed in Chapter 4. These are not keyed hash functions

in the sense discussed above.

1.3 Attacks on Cryptographic Hash Functions

The main difference between non-cryptographic hash functions and cryptographic

hash functions is that cryptographic hash functions must withstand serious attack.

For example, non-cryptographic hash functions are expected to produce few hash

collisions in normal use. In contrast to that, cryptographic hash functions are ex-

pected to produce no collisions even when a malicious attacker deliberately tries

to create them using all his/her mathematical knowledge, computational power

and any other resources available to him/her. This would be called a collision at-

tack. Similarly, an attack that tries to produce a preimage of a hash value (under

a certain hash function) is called a preimage attack on that hash function, and

an attack that attempts to create a second preimage is called a second preimage

attack. These are the three properties of hash functions which may be attacked

(and therefore it is desirable to somehow prove that such attacks are hard). The

1.3. Attacks on Cryptographic Hash Functions 5

other properties mentioned in Section 1.2 such as efficiency, determinism, ran-

domness and avalanche effect are desirable properties of hash functions, but they

are not attacked directly. However, poor avalanche effect or missing randomness

may allow attacks on one or several of the security properties (in this case, for

example, through statistical analysis).

1.3.1 Brute Force Attacks

The conceptually simplest type of attack is a brute force attack. Such an attack

performs an exhaustive search, that is, it tries a large number of possibilities until

it is successful. For example, a brute force preimage attack which tries to find a

preimage for a given digest d would try many different messages, hash them, and

compare the results to d until it finds a match. The more efficient a hash function

is, the more efficient this becomes.

If a hash function has 2m possible output values (say an m-bit hash and every

m-bit string is a possible output, i.e. the hash function is surjective), then one

would have to try 1
2
·2m = 2m−1 messages on average to find a preimage. One would

say the hash function has m−1 bits of security, or often also m bits of security,

since this is only a rough measure anyway. A second preimage attack works

similarly. One has to try approximately 2m−1 messages to find one that hashes

to the same value as a given message. Note that in terms of a brute force attack,

there is no difference between preimage and second preimage attacks. In more

intelligent attacks, however, the extra knowledge of the first message (for which a

collision should be produced) might leave an attacker at a slight advantage.

There is a more clever and efficient way to perform a brute force collision

attack. It is based on the birthday paradox, a standard statistics problem:

How many people must be in a room for the probability that one of them

shares my birthday to be greater than 50%? To answer this question, let p(m) be

the probability of at least one out of m people sharing my birthday. Also assume

every year has 365 days and all birthdays are equally likely. Then

p(m) = 1 −
(

364

365

)m

.

Solving p(m) > 0.5 gives that there must be at least 253 people in the room.

How many people must be in a room for the probability that two of them

share the same birthday to be greater than 50%? If the probability that this is

the case for m people in a room is q(m) then

q(m) = 1 − 1 ·
(

364

365

)

·
(

363

365

)

·
(

362

365

)

· · ·
(

365 − m + 1

365

)

.

Now solving q(m) > 0.5 gives m ≥ 23. So there need only be 23 people in a room

for the probability that two of them have the same birthday to be greater than

6 Chapter 1. Introduction to Hash Functions

50%. Most people intuitively expect this number to be much larger, which is why

this is called the birthday paradox.

Still, it becomes clear why this is so when considering that there are exactly
(

23
2

)

= 253 possible pairings of people in a room of 23 people. Considering this it

is not surprising that the probability that the birthdays of at least two of these

people coincide is equal to that of the first scenario, where one of 253 people must

share my birthday (hence there are 253 I/someone-else pairs).

When people with the same birthday are replaced by messages with the same

hash value, this theory can be applied to attacks on hash functions. The first

scenario is equivalent to performing a second preimage attack as explained above.

One message is fixed, and to find another message with the same hash, a large

number of messages have to be tried. The second scenario can be used to perform

a collision attack. This is often called a birthday attack, since its success is based

on the birthday paradox. To find two arbitrary messages that collide, a much

smaller amount of work needs to be done. In fact, by using the Taylor series

approximation of q(m) and solving the resulting equation, it can be seen that for

a surjective m-bit hash function (where every output has the same probability

and m is sufficiently large) one is expected to obtain a collision by evaluating the

hash function for approximately 1.2 ·
√

2m = 1.2 · 2
m

2 messages. For example, a

machine that hashes a million messages per second would take 600,000 years to

find a second preimage for a 64-bit hash function, but it could find an arbitrary

collision in about one hour [56]. Hence the complexity of a birthday attack is only

a square root of the complexity of a regular brute force attack, and if a hash is

open to birthday attacks (i.e. it is meant to be collision resistant), it must have

double the number of bits of security.

A brute force attack is possible on any hash function, regardless of its structure.

Hence one needs to make sure that the hash value is big enough, so that brute force

attacks become too complex for even the fastest computers available. So how big

is “big enough”? That depends very much on the available computing power, and

hence it changes with time. Currently, NIST (the American National Institute

of Standards and Technology) recommends replacing all hash functions that are

open to birthday attacks by ones which achieve at least 256 bits of security [59].

This means that 256 bits of security are considered secure against brute force

birthday attacks (and 128 bits for hashes that are not open to birthday attacks).

This number comes from calculations which take into account that the current

protocol will be used for a few years, that messages in the protocol will be stored

for a few years after that, and that it should then still take a few years brute

force to finally crack them. It probably assumes that Moore’s Law, the empirical

observation that the computing power per unit cost doubles approximately every

18 months, continues to hold.

1.3. Attacks on Cryptographic Hash Functions 7

1.3.2 Cryptanalytic Attacks

There are “smarter” attacks than brute force. Careful mathematical analysis of

the functioning of a hash algorithm often allows attacks that require less complex-

ity than brute force, but which are specific to that one hash algorithm or type of

hash algorithm they are made for. The study of methods to perform these kinds

of attacks is called cryptanalysis, and the attacks are called cryptanalytic attacks.

Of course, the power of an attacker depends on the resources available to him.

In cryptanalysis, Kerckhoffs’ principle is generally assumed: that the algorithm

itself is public knowledge, that is, known by the attacker. This is true for all

standardised and other widely used hash functions. Security should not rely on

the algorithm being hidden from an attacker (this is often called security through

obscurity), but it should rather have its foundation in the mathematical properties

of the hash.

Note also that many successful cryptanalytic attacks are side channel attacks,

which exploit a weakness in the implementation of an algorithm rather than its

mathematical structure. Such attacks are dangerous and defence against them is

important, but this is not the subject of this thesis.

A hash function is considered broken if an attack has been found that can

produce preimages, second preimages, or collisions with less computational com-

plexity than a brute force attack would take. For example, a hash with a 160-bit

hash value is considered broken if collisions can be found in 277 operations. This

is regardless of whether 277 is actually computationally feasible or not, so it does

not necessarily mean that the attack can be exploited in practice.

1.3.3 The Adversary

In the theory of cryptography, an attacker is often represented as an adversary

algorithm. A successful attacker is an algorithm that can produce (second) preim-

ages or collisions within feasible complexity. For a hash function to be secure, we

need to know that such an algorithm does not exist. This is the approach usually

taken when proving security properties of hash functions. It is assumed that there

is an algorithm which can efficiently produce (second) preimages or collisions, and

this algorithm is then used to show that something else can be produced efficiently

with it when we know that it cannot, giving a contradiction.

For example, to prove that a hash is preimage resistant, it needs to be shown

that it is “hard” to produce a preimage for a given hash value, that is, that there

is no polynomial-time (i.e. efficient) algorithm which can do this. A typical proof

would assume that such an algorithm exists and derive a contradiction.

8 Chapter 1. Introduction to Hash Functions

1.4 Applications of Hash Functions

Hash functions are used widely for many different applications in computer sci-

ence. As an illustration of how cryptographic hash functions are special, we will

start with a brief discussion of non-cryptographic uses of hash functions.

1.4.1 Applications of Non-Cryptographic Hash Functions

Here the fundamental property that two different inputs are likely to hash to

different values is assumed, but beyond that specific properties are not required.

The most well-known example is the hash table, which allows efficient lookup

of data records. A hash function maps each key (e.g. a person’s name) to a (prob-

ably unique) index, the hash digest, which is used to store and locate the desired

value. It is important that the indexes are mostly distinct, because the proce-

dure for collision resolution adds undesired complexity and therefore degrades the

performance of a hash table implementation.

Another important application is error detection. When data is transmitted

electronically, for example through the Internet, bit errors are likely to occur. To

detect them, a hash value of the data can be added and upon receipt, the hash

value of the data can be re-calculated and compared to the received hash value.

If the values match, errors are highly unlikely because the original message and a

received incorrect message are very unlikely to hash to the same value.

Hash functions are also used for quick comparison of data. Where it would be

too complex to compare two data sets, the hash values can be compared. If they

are the same then it is very probable that the original data sets are the same.

This method is used for audio identification, for example to find out if an MP3

file matches one of a list of given files.

1.4.2 Applications of Cryptographic Hash Functions

A hash function that has some or all of the security properties defined in Section

1.2 can be used for even more interesting purposes: for applications in crypto-

graphy.

Most people immediately associate cryptography with encryption and decryp-

tion of data. However this is only a small part of what is actually involved in

cryptography. Besides encryption, the discipline also includes authentication, ac-

cess control, digital signatures and much more. During the last few years each of

these techniques have become central to computer network security, which now

concerns anyone using a computer network such as the Internet; and many of

these techniques utilise cryptographic hash functions.

A standard example that well illustrates the use of cryptographic hash func-

tions is password storage in a multiple-user system, where each user has to au-

thenticate themselves by entering a password. The system has to check whether

1.4. Applications of Hash Functions 9

an entered password is correct, but simply storing all username-password matches

in a file is not a good idea because such a file could easily be compromised by an

attacker, who would then have access to all the passwords. What is done in prac-

tice (e.g. in all Linux systems) is that the the hash values of passwords are stored.

That way an attacker who gains access to the file still does not know a single

password. He/she cannot calculate them because the cryptographic hash func-

tion is one-way. But when a password is entered, its hash can be re-calculated and

compared to the stored value, thus authenticating a user who knows the correct

password.

Hash functions are also a vital part of many digital signature schemes, which

are designed to have all the properties of a physical signature but can be com-

puted and transmitted electronically. Since digital signatures often use public

key cryptography and are therefore expensive to compute, it is useful to hash a

message and only sign the (usually much shorter) hash value. Since hashing is

fast, this saves computation time. This does mean, however, that the signature

scheme is only as good as the hash function used and that flaws in the hash func-

tion will weaken the security of the signature. In other words, the security of the

signature scheme depends on the strength of the hash function. For example, if

two documents have the same hash, their signature is also identical. If it is easy

to produce collisions then signatures can be forged for certain documents. If it

is known that a signature can easily be forged then the signer can credibly deny

that he/she signed the document, leaving the signature scheme useless.

Similarly to the error checking functionality of non-cryptographic hashes, cryp-

tographic hash functions are used to check the integrity of files. This is often

referred to as malicious code recognition and finds applications in intrusion de-

tection systems and file servers. Some types of intrusion detection systems store

cryptographic hashes of important system files and are able to check that a file has

not been altered by re-computing the hash and comparing it to the stored value.

File servers often provide so-called cryptographic checksums that can be used to

affirm the integrity of downloaded files, as long as the server can be trusted. In

contrast to error checking, where only randomly occurring errors must be found

(which makes a non-cryptographic hash sufficient), malicious code detection re-

quires detecting deliberate alterations made to code. This includes attackers who

are aware that hashes have been stored and may thus try to produce malicious

code with the same hash as the original code. If the hash function is second

preimage resistant, however, such code becomes impossible to produce. This is a

good way of preventing a computer from running maliciously altered code, which

might otherwise cause much harm to the system.

Hash functions can also be used to build other cryptographic primitives, such

as message authentication codes (MACs), which are used to authenticate messages.

10 Chapter 1. Introduction to Hash Functions

A MAC algorithm can be a keyed hash function, that is, a hash function that takes

as input an arbitrarily long message and a secret key. For a collision resistant hash

function, only someone who knows the secret key is able to compute the particular

hash value or MAC. The message authentication code also protects the integrity

of the message, since it allows the verifier (who also possesses the secret key) to

detect any changes to the message content.

Cryptographic hash functions can also be used to build commitment schemes,

block ciphers, stream ciphers and pseudo-random number generators.

1.5 Design of Cryptographic Hash Functions

Looking at the different requirements a cryptographic hash function should fulfil

and the attacks it must withstand, it is already obvious that such functions are

hard to design. It becomes even more obvious when considering the following

arguments.

The space of inputs {0, 1}∗ has infinitely many elements, whereas the number

of possible outputs |{0, 1}m| = 2m is finite. Therefore a hash function is never

injective, that is, collisions always exist. For a cryptographic hash function to be

collision resistant it does not only have to be unlikely that two given messages

will hash to the same value, but it has to be hard for an adversary to find a

collision who deliberately tries to produce one. The difficulty lies in designing a

hash function such that these collisions are hard to produce.

Another challenge lies in the requirement that hash functions be fast. They

must be efficiently computable in one direction and intractable in the other di-

rection. Most operations that have this property (e.g. factoring or discrete log-

arithms) require multiplications or even exponentiations, which are expensive to

compute. Operations that are cheap on a computer, such as XOR or addition,

are easy to reverse.

The greatest difficulty in hash function design, however, lies in proving prop-

erties. It is not good enough to assume or argue that security properties are

satisfied, but it is extremely hard to be sure that they are. Almost all hash func-

tions that were thought to have wonderful cryptographic properties but have no

proofs of security were broken eventually. But at the same time, it is very difficult

to come up with good proofs. This is partly due to the fact that proofs have

to make many simplifying assumptions, which are often not realistic enough. A

human attacker has to be impersonated by an algorithm, and computing power

has to be quantified precisely. Also, the ideas of “hardness” vary greatly among

cryptographers, and many definitions are so complicated that they become very

tricky to handle mathematically.

Because it is so difficult to design good cryptographic hash functions, the

security of most hash algorithms used today is questionable. Many of them are

well thought out. Much time and energy has gone into their construction and they

1.5. Design of Cryptographic Hash Functions 11

were tested thoroughly. Yet these designs seem ad-hoc and it is not immediately

clear why they achieve the properties they claim. Often it is more hope than

certainty. Maybe not surprisingly, weaknesses are frequently found and it has

become a race to keep up with the most recent attacks and replace hash functions

with newer ones as weaknesses are found, hoping that the new algorithm might

last for a while and that someday someone will finally find a hash function that

can really be trusted.

Chapter 2

Custom-Designed Hash Functions

The most commonly used hash functions today are MD5 and SHA-1. These are

custom-designed hash functions, that is, algorithms that were especially designed

for hashing operations. Other examples of custom-designed hash algorithms are

MD2, MD4 and MD5 (the MDx-family), SHA-0, SHA-1, SHA-256/224 and SHA-

512/384 (the SHA-family), RIPEMD-160, HAVAL and N-hash.

Custom-designed hash algorithms are designed to be very efficient on 32-bit

machines, which makes them very popular, even though their security is only

based on heuristic arguments. None of the desired properties of cryptographic

hash functions can actually be proven for them. However recent advances in

cryptanalysis have shown that this is not good enough. In fact, all of the hash

functions mentioned above apart from the SHA-2 algorithms (i.e. SHA-224, SHA-

256, SHA-384, SHA-512) are currently considered broken. Although not all of the

theoretical attacks are practical yet, they are rapidly being improved and put into

practice. Trust in custom-designed hashing has long been undermined, leaving

hardly any cryptographic hash functions that can still be used without concern.

This chapter discusses the two most widely used custom-designed hash algo-

rithms MD5 and SHA-1, how they work, how their security is argued and how they

have been attacked. This motivates the research of hash functions with provable

security, which will be investigated in the following chapters.

2.1 MD5

The Message Digest Algorithm 5, known as MD5, was designed by Ronald Rivest

of MIT in 1991 and is specified in the MD5 RFC [53]. It takes a message of

arbitrary length as input and produces a 128-bit message digest.

MD5 is used widely in the software world to compute cryptographic checksums

and to store passwords. It is part of applications such as GPG (public key encryp-

tion), Kerberos (network authentication), TLS (secure client-server connections),

SSL (client-server authentication), Cisco type 5 enable passwords (password stor-

age system) and RADIUS (remote user authentification) [67].

13

14 Chapter 2. Custom-Designed Hash Functions

2.1.1 Terminology and Notation

A “byte” is an 8-bit quantity and a “word” is a 32-bit quantity. A sequence of

8 bits is interpreted as a byte with the most significant bit listed first, and a

sequence of 4 bytes is interpreted as a word with the least significant byte listed

first.

Let “+” denote addition mod 232 and let “≪ s” denote circular left shift

(rotation) by s bit positions. Let “X ∧ Y ” denote bit-wise AND of X and Y ,

“X ∨Y ” bit-wise OR of X and Y , “X ⊕Y ” bit-wise XOR of X and Y , and “¬X”

the bit-wise complement of X.

2.1.2 The MD5 Algorithm

Let M be the input message of length b bits. M is first padded to a multiple of

512 bits and then divided into 512-bit blocks M0, . . . ,Mn−1, each consisting of 16

words. Each block is then processed in 4 rounds, each consisting of 16 operations,

using a 4-word buffer denoted A,B,C,D. After all blocks have been processed,

the buffer contains the message digest.

More specifically, the steps in MD5 are:

1. Padding. A single bit “1” is appended at the end of the message. Then “0”

bits are appended until the length of the new message is congruent to 448

modulo 512. Finally a 64-bit representation of b (the length of the original

message) is appended. The resulting message is an exact multiple of 512

bits long.

2. Initialise buffer. The buffer is initialised to the hex values

A = 01234567

B = 89ABCDEF

C = FEDCBA98

D = 76543210

(with the least significant bit listed first).

3. Compute constants. A 64-element table is computed from the sine func-

tion according to the formula Kt = ⌊232 · |sin(t+1)|⌋ for t = 0, . . . , 63, where

t is in radians.

4. Auxiliary functions. Four auxiliary functions, which each take as input

three 32-bit words and produce as output one 32-bit word, are defined as

ft(B,C,D) = (B ∧ C) ∨ (¬B ∧ D) for t = 0, . . . , 15

ft(B,C,D) = (B ∧ D) ∨ (C ∧ ¬D) for t = 16, . . . , 31

ft(B,C,D) = B ⊕ C ⊕ D for t = 32, . . . , 47

ft(B,C,D) = C ⊕ (B ∨ ¬D) for t = 48, . . . , 63.

2.1. MD5 15

5. Word order. Define the following vector that determines in which order

the words of a block will be processed in each round:

Round 1: (j0, . . . , j15) = (0, 1, . . . , 15)

Round 2: (j16, . . . , j31) = (1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12)

Round 3: (j32, . . . , j47) = (5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2)

Round 4: (j48, . . . , j63) = (0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9)

6. Shift amounts. Define the following shift amounts:

Round 1: (s0, . . . , s15) = (7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22)

Round 2: (s16, . . . , s31) = (5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20)

Round 3: (s32, . . . , s47) = (4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23)

Round 4: (s48, . . . , s63) = (6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21)

7. Process message in 16-word blocks.

/* Process each 16-word block. */

for i = 0, . . . , n − 1 do

(a) Divide Mi into words W0, . . . ,W15, where W0 is the left-most word.

(b) Save A as Ā, B as B̄, C as C̄ and D as D̄:

Ā = A

B̄ = B

C̄ = C

D̄ = D

(c) for t = 0, . . . , 63 do

X = B + ((A + ft(B,C,D) + Wjt
+ Kt) ≪ st)

A = D

D = C

C = B

B = X

end /* of loop on t */

(d) Then increment each of the four registers by the value it had before

this block was started:

A = Ā + A

B = B̄ + B

C = C̄ + C

D = D̄ + D

end /* of loop on i */

8. Output. The message digest is A,B,C,D.

16 Chapter 2. Custom-Designed Hash Functions

One MD5 operation at step 7c can be described in the following diagram:

A B C D

A B C D

+

+

+

+

≪ st

ft

Wjt

Kt

2.1.3 Security of MD5

According to his own statements in the specification [53], Rivest designed MD5

so that it is computationally infeasible to produce two messages having the same

message digest, or to produce any message having a given prespecified target

message digest, that is, to be collision resistant and preimage resistant. In addi-

tion, MD5 was made to be fast on 32-bit machines and to operate without large

substitution tables, hence it can be coded compactly.

While the second and third attributes can be easily verified and are definitely

true, the security of MD5 is based on a number of heuristic arguments and no

proofs of security exist. Heuristic arguments include that

• the auxiliary functions are non-invertible, non-linear and asymmetric,

• if bits in B,C and D are independent and unbiased, then each bit of

ft(B,C,D) will be independent and unbiased,

• each step adds in the result of the previous step,

• each step has a unique additive constant,

• input words are accessed in a different order in each round, and

• shift amounts in different rounds are distinct.

All of these attributes are said to increase the avalanche effect, meaning that

if an input is changed slightly (for example, changing a single input bit), then the

output changes significantly (for example, half the output bits flip).

2.1. MD5 17

While its speed and the fact that the algorithm is fairly simple and publicly

available have made MD5 very popular, it seems rather alarming that the al-

gorithm is used in many cryptographic applications to this day, considering its

security is not supported by any proof at all.

2.1.4 Attacks on MD5

MD5 was designed in 1991 to replace an earlier hash function MD4 in which

flaws had been found. However, it was soon discovered that MD5 also has its

problems. Starting in 1993 the use of MD5 was more and more questioned by

several successful collision attacks, and recent results have completely destroyed

confidence in the algorithm.

In 1993, den Boer and Bosselaers [5] were able to find a so-called pseudo-

collision for the compression function of MD5, that is, two different initialisation

vectors that produce a collision when the MD5 compression function is applied to

the same message. Although this is an attack that has no practical significance,

it exposed the first weakness in MD5.

Dobbertin [16] announced a collision of the MD5 compression function in 1996.

While this was not an attack on the full version of MD5, it worried cryptographers

enough to recommend switching to a replacement, such as SHA-1, WHIRLPOOL,

or RIPEMD-160.

Also, a hash of 128 bits is small enough to allow birthday attacks. Cooke and

his company launched a distributed search project in 2004 with the aim of finding

collisions for MD5 by a brute force search using Pollard’s rho method [39, 40]. The

project was abandoned a few months later, when it was announced that collisions

had actually been found by analytical methods. This announcement was one of

the greatest moments in cryptanalysis for many, and it is said that Wang and her

team [66] received a standing ovation when they reported that they had found

collisions for the full MD5 at the CRYPTO conference in August 2004. Their

attack took about one hour on an IBM p690 cluster, a very powerful Unix server.

Less than a year later, this attack was further improved by Klima [31], who

presented an improved algorithm that is able to construct collisions within only

a few hours on a single notebook computer. Lenstra, Wang and de Weger [36]

showed how this could become an attack of practical importance by constructing

two X.509 certificates with different public keys and the same MD5 hash. X.509

is a standard for a public key infrastructure which is widely used, and this attack

allows the construction of false certificates. It is the first attack on MD5 of

practical significance.

In March 2006 Klima [32] presented a further improved algorithm that can

find collisions within one minute on an ordinary notebook computer. It uses a

method called tunneling.

18 Chapter 2. Custom-Designed Hash Functions

This completes the history of MD5 cryptanalysis as of today (7/12/06), but

one can never be sure which attack is being worked on behind the scenes right

now. Although only collision attacks (and no preimage or second preimage at-

tacks) have been announced so far, it has also been shown how even collision

attacks can be of practical importance, leaving MD5 an untrustworthy hash algo-

rithm. Its replacement has long been recommended by anyone who understands

the significance of these attacks.

Apart from cryptanalytic attacks, numerous projects have recently created

MD5 reverse lookup databases. These are easily accessible online and may be

used to look up preimages of a large number of MD5 digests. Such databases can

be found at

• http://md5.crysm.net/

• http://md5.benramsey.com/

• http://md5.rednoize.com/,

just to give some examples. When trying to crack passwords, which are frequently

just dictionary words, consulting such a database is often a successful approach.

2.2 SHA-1

SHA-1 is the most commonly used member of the Secure Hash Algorithm (SHA)

family. It was published by the National Security Agency (NSA) in 1995 as a

US government standard [17] and to replace the SHA-0 algorithm from 1993, in

which a flaw had been found. SHA-1 takes an input message of at most 264 − 1

bits and produces a message digest of length 160 bits.

Since MD5 became untrustworthy, SHA-1 has become the most commonly

used hash function. It is employed in security applications and protocols such as

OpenPGP (encryption of data), S/MIME (public key encryption and signing of

e-mail), IPSec (encryption and/or authentification of IP packets) and SSH (secure

remote login). The copy prevention of Microsoft’s Xbox game console also relies

on SHA-1 [60].

2.2.1 Terminology and Notation

As for MD5, 8 bits make up a “byte” with the most significant bit listed first, 4

bytes make up a “word” with the most significant byte listed first, and 16 words

make up a block.

As before, let “+” denote addition mod 232 and “≪ s” circular left shift

(rotation) by s bits. Let “∧”, “∨”, “¬” and “⊕” denote bit-wise AND, OR, NOT

and XOR, respectively.

2.2.2 The SHA-1 Algorithm

SHA-1 is often considered a successor of MD5 because its design is very similar.

Padding is performed in the same way, then a message M of length b bits is

2.2. SHA-1 19

split into 16-word blocks M0, . . . ,Mn−1 and each block is processed in 4 rounds,

consisting of 20 operations each, and using a 5-word buffer A,B,C,D,E. After

all blocks have been processed, the buffer contains the message digest.

More specifically, the steps in SHA-1 are:

1. Padding. M is considered as a bit string and a single bit “1” is appended at

the end of the message. Then “0” bits are appended until the length of the

new message is congruent to 448 modulo 512. Finally a 64-bit representation

of b is appended, resulting in a message which is an exact multiple of 512

bits long.

2. Initialise buffer. The buffer is initialised to the hex values

A = 67452301

B = EFCDAB89

C = 98BADCFE

D = 10325476

E = C3D2E1F0.

3. Constants. The following constants are used (in hex):

Kt = 5A827999 for t = 0, . . . , 19

Kt = 6ED9EBA1 for t = 20, . . . , 39

Kt = 8F1BBCDC for t = 40, . . . , 59

Kt = CA62C1D6 for t = 60, . . . , 79

4. Auxiliary functions. A sequence of logical functions is used, each oper-

ating on three words and producing one word as output. They are defined

as follows:

ft(B,C,D) = (B ∧ C) ∨ (¬B ∧ D) for t = 0, . . . , 19

ft(B,C,D) = B ⊕ C ⊕ D for t = 20, . . . , 39

ft(B,C,D) = (B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D) for t = 40, . . . , 59

ft(B,C,D) = B ⊕ C ⊕ D for t = 60, . . . , 79

5. Process message in blocks.

/* Process each 16-word block. */

for i = 0, . . . , n − 1 do

(a) Divide Mi into 16 words W0, . . . ,W15, where W0 is the left-most word.

(b) For t = 16, . . . , 79 let Wt = (Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16) ≪ 1.

(c) Save A as Ā, B as B̄, C as C̄, D as D̄ and E as Ē:

Ā = A

B̄ = B

C̄ = C

D̄ = D

Ē = E

(d) for t = 0, . . . , 79 do

X = (A ≪ 5) + ft(B,C,D) + E + Wt + Kt

20 Chapter 2. Custom-Designed Hash Functions

E = D

D = C

C = B ≪ 30

B = A

A = X

end /* of loop on t */

(e) Then increment each of the four registers by the value it had before

this block was started:

A = Ā + A

B = B̄ + B

C = C̄ + C

D = D̄ + D

E = Ē + E

end /* of loop on i */

6. Output. The message digest is A,B,C,D,E.

One SHA-1 operation at step 5d can be described by the following diagram:

A

A

B

B

C

C

D

D

E

E

+

+

+

+≪ 30

≪ 5

ft

Wt

Kt

2.2.3 Security of SHA-1

The authors of the SHA-1 RFC [17] claim that it is computationally infeasible

to find a message which corresponds to a given message digest, or to find two

different messages which produce the same message digest for SHA-1. As with

MD5, however, no proofs of security exist and all there is to support this statement

are heuristic arguments like those mentioned for MD5 in Section 2.1.3.

SHA-1 is also very fast on 32-bit machines and can be coded quite compactly,

and it is thus used very widely. In fact, as flaws were found in MD5, cryptographers

2.2. SHA-1 21

recommended replacing MD5 by SHA-1, which was done in many applications.

Since SHA-1 has been broken as well (meaning that collisions can be produced

with less computational complexity than that of a brute force attack), NIST now

plans to replace SHA-1 by members of the SHA-2 family (SHA-224, SHA-256,

SHA-384, SHA-512, named after their digest lengths), for which no attacks have

been reported, by 2010.

2.2.4 Attacks on SHA-1

The members of the SHA-family were designed as successors of MD4, just as MD5

was, but they lasted a bit longer. SHA-1 is very similar to its predecessor SHA-0,

and so the first reason to doubt the security of SHA-1 was the announcement

that SHA-0 had been broken by Chabaud and Joux [8] at CRYPTO ’98. The

next milestone in the cryptanalysis of SHA-0 was when Wang and her team [66]

announced their collision attack in 2004, which also works for SHA-0. That was

when cryptographers first started to recommend finding alternatives to SHA-1,

especially in the design of new cryptosystems. Also as a result of that, NIST

announced it would phase out the use of SHA-1 by 2010 and replace it by SHA-2

variants [44].

The first successful attack on SHA-1 itself was performed by Rijmen and Os-

wald [52] in early 2005. They were able to break a reduced version of SHA-1: 53

out of 80 rounds. Only a month later a break of the full version of SHA-1 was

announced by Wang, Yin and Yu [58]. This was another famous day for Wang

and her team, who based their attack on several different methods used in earlier

attacks on SHA-0 and MD5. This attack required 269 operations, but was soon

improved to take only 263 [57]. Such collision attacks generally work by starting off

with two messages and continually modifying them throughout the attack. That

means that the structure of the colliding messages is determined by the attack,

and they will almost certainly turn out to be complete gibberish. Although this

is of theoretical importance, it is hard to turn it into a practical attack.

At CRYPTO ’06, however, Recheberger and de Cannière announced the first

collision attack on SHA-1 where the attacker can influence the colliding messages.

According to Recheberger [61], the new attack allows up to 25% of the colliding

messages to be freely selected, as straight text for instance. The remaining 75%

are again determined by the attack, but it is suspected that the amount to be

freely selected can be further increased by optimising the attack. This is now a

quite practical attack itself, considering that HTML documents, for example, may

have complete nonsense after the </html> tag that will never be printed. So it is

now possible to produce two seemingly identical html documents with the same

SHA-1 hash. This leaves SHA-1 no better off than MD5.

22 Chapter 2. Custom-Designed Hash Functions

Just as with MD5, (second) preimage attacks on SHA-1 have not been accom-

plished, but the collision attacks have reached a level that causes serious concern

and makes urgent a quick replacement of the algorithm.

2.3 Security of Custom-Designed Hash Functions

As for MD5 and SHA-1, successful collision attacks have been performed for all

custom-designed hash functions except RIPEMD-160 and the SHA-2 family. Ad-

mittedly, some collision attacks are of limited practical significance and preimage

attacks have not been found. Still, the reasons to distrust custom-designed hash-

ing are many. More important than the actual attacks is the fact that security

properties cannot be proven, leaving users in permanent distress about how secure

they are. Hash functions have too many important applications to leave their se-

curity up to assumptions and luck. Hash functions of which security properties are

certain are highly desirable, making research into provably secure hash functions

absolutely necessary.

Chapter 3

Provably Secure Hashing

Recent developments in the cryptanalysis of hash functions have clearly shown

that heuristic security arguments are not good enough. Something provable is

needed. Hashing is a vital concept in cryptography and at the moment there are

no hash functions which are efficient and whose security can be trusted at the

same time. Nobody knows exactly how far away we are from such designs, but

research in the area of provably secure hash functions has been going on for many

years. There are some promising designs that seem to need only a little bit more

work to make them practical.

One major issue is always the speed-security trade-off. Security typically re-

lates to the difficulty of a well-known hard problem, but most of these prob-

lems involve operations which are slow on a computer, such as exponentiation

or multiplication. Provably secure hash functions will probably never be as fast

as custom-designed hash functions, but that might just be a sacrifice one has to

make to achieve security.

First, however, a few basic questions have to be answered. What properties

exactly does a provably secure hash function have, what is considered secure, how

is security measured, how is security proven and how are secure hash functions

designed? These basic ideas are introduced in this chapter before the following

chapters go on to show some concrete examples of such functions.

3.1 Types of Provably Secure Hash Functions

There are different types of provably secure hash functions, depending on which

of the security properties have to be fulfilled.

Definition 3.1.1 (collision resistant hash function (CRHF))

A collision resistant hash function (CRHF) is a hash function that is

• preimage resistant and

• collision resistant.

The concept of collision resistant hash functions was first introduced by Merkle

[41], and the first formal definition was given by Damg̊ard in 1989 [13].

Since collision resistance implies second preimage resistance, collision resistant

hash functions have all three desired security properties and can therefore be

considered the “best” hash functions. However, they are also the hardest to

design, since collision attacks are very difficult to defend against. In fact, the

23

24 Chapter 3. Provably Secure Hashing

effort to find a collision is only the square root of the effort to find a second

preimage. This motivates the definition of another primitive.

Definition 3.1.2 (one-way hash function (OWHF))

A one-way hash function (OWHF) is a hash function that is

• preimage resistant and

• second preimage resistant.

One-way hash functions were first introduced by Diffie and Hellman in 1976

[15]. Since second preimage resistance is a weaker requirement than collision

resistance, they are easier to design than CRHFs.

A slightly different primitive was introduced by Naor and Yung in [43] in 1989.

Definition 3.1.3 (universal one-way hash function (UOWHF))

A universal one-way hash function (UOWHF) H is a family of one-way

hash functions indexed by a key

H = {hK : {0, 1}∗ → {0, 1}n | K ∈ K}

where K = {0, 1}k is the key space (hence k is the key size in bits).

Note that the keys here are not secret elements. They are public and more

parameters than keys, but traditionally called keys. Their purpose is not obvious

without the more formal definition of UOWHFs using the model of an attacker

algorithm, which will be given in Section 4.1.

Naor and Yung [43] prove constructively that UOWHFs exist and also show

that their security assumption, although not as strong as that of CRHFs, is strong

enough for some applications. For example, they propose a one-way based secure

digital signature scheme, which is based on UOWHFs and still secure against

the most general attack known (it is existentially unforgeable under an adaptive

chosen plaintext attack).

After having weakened the assumption in going from a CRHF to a OWHF,

it seems natural to take this idea one step further, pull out yet another property,

and define yet another type of provably secure hash function.

Definition 3.1.4 (preimage resistant hash function (PRHF))

A preimage resistant hash function (PRHF) is a hash function that is

• preimage resistant.

This is the “weakest” type of hash function, requiring neither second preimage

resistance nor collision resistance, but only preimage resistance. Therefore it is

also the easiest to design. And yet it is still good enough for many authentication

applications such as password storage, as shown in Chapter 5.

3.2. NP-Complete Problems 25

3.2 NP-Complete Problems

All types of provably secure hash functions require certain operations (such as

finding preimages, second preimages, or collisions) to be “hard” or “computation-

ally infeasible”, even though they are theoretically possible. A preimage always

exists, but no one should be able to find it, even if they possess all the computa-

tional power and resources in the world and are given a huge amount of time (e.g.

the age of the universe). How can something like that be defined more precisely,

and how can it be proven?

In theoretical computer science there is a theory about a class of problems,

called NP-complete problems, which are believed to be very hard to solve. Al-

though the proof of this remains one of the biggest open problems in computer

science today, scientists have very good reasons to believe that no efficient algo-

rithms exist to solve such problems. They are considered the hardest problems

with solutions that can be verified efficiently.

Thus far we have not rigorously defined what it means for a problem to be

“hard”. A popular and probably the most practicable approach in cryptography

is calling a problem “hard” precisely when it is NP-complete. The hardness of

operations is then proven by relating them to well-known NP-complete (i.e. be-

lieved intractable) problems. If it can be proven that finding a preimage to a hash

is at least as hard as solving a given NP-complete problem, for instance, then that

gives an excellent indication that such a computation is among the most difficult.

This is different to the concept of proving things in mathematics and might seem

imprecise and unsatisfactory at first, but it is the best we can do at the moment,

and it has turned out to work well in practice. It is clearly much better than what

can be done for custom-designed hashes.

The machinery to do this has been formalised over the years (e.g. in [11])

and allows proving concrete statements about how secure certain operations are.

This section introduces some of the most important concepts of the theory of

NP-completeness and explains how NP-complete problems can be used to prove

cryptographic properties of hash functions.

3.2.1 Terminology and Notation

First, an important distinction between the terms “problem”, “instance” and

“algorithm” must be made. A problem is a general question to be answered and

has many instances; each instance has a solution. There may be many algorithms

which solve a problem. A problem is formally defined as follows:

Definition 3.2.1 (abstract problem)

An abstract problem Q is a function Q : I → S that maps an instance from the

set I of problem instances to a solution from the set S of problem solutions.

26 Chapter 3. Provably Secure Hashing

For example, the problem ShortestPath can be formulated as “given a graph

G and two vertices v and w, find the shortest path between v and w”. (For graph

theory definitions see Section 5.1.) An instance of this problem would be a triple

of a specific graph G = (V,E) and two vertices v, w. A solution would be a

sequence of vertices v, v1, . . . , vn, w describing a path from v to w.

A decision problem is one that has a yes/no solution. More formally:

Definition 3.2.2 (decision problem)

A decision problem Q is a function Q : I → {0, 1} that maps an instance from

the set I of problem instances to a solution from the set {0,1}.
Formally the theory of NP-completeness only applies to decision problems.

Although many natural problems are not decision problems, every problem can

be turned into a decision problem in a natural way. ShortestPath is an optimisation

problem, but it can be stated as a decision problem in the following way: “given

a graph G and two vertices v and w, does there exist a path from v to w of

length at most k?” This problem is referred to as Path(k). The solution 1 is

usually taken to mean “yes” and 0 is taken to mean “no”. It is obvious that if

the optimisation problem can be solved, the decision problem can also be solved,

simply by comparing the value obtained from the optimisation problem solution

(e.g. the length of the shortest path) to the bound in the decision problem (e.g.

k). This means that the optimisation problem is at least as hard as the decision

problem. Therefore optimisation problems may also be referred to as NP-complete

(as defined in Section 3.2.5), although the theory of NP-completeness formally only

applies to decision problems.

An algorithm is a general step-by-step procedure (a computer program) that

solves a given problem. That is, given any instance of a problem, the algorithm

attempts to find the corresponding solution. Being a computer program, an algo-

rithm can only take inputs in the form of binary strings (e.g. a binary represen-

tation of natural numbers). Hence any problem instance must be encoded in this

form.

Definition 3.2.3 (encoding)

An encoding is a mapping from a set of abstract objects to the set of binary

strings {0, 1}∗.
For example, a graph can be encoded to a binary string by listing the rows

of its adjacency matrix, by listing all vertices and edges in a specified way, or by

listing each vertex with all its neighbours.

Using an encoding, every abstract problem can be converted to a concrete

problem.

Definition 3.2.4 (concrete problem)

A concrete problem is an abstract problem with instance set {0, 1}∗.

3.2. NP-Complete Problems 27

Notation 3.2.5

Let f and g be functions from N to R. Then f(n) = O(g(n)) if there exists a

constant c such that |f(n)| ≤ c · |g(n)| for all n ≥ 0.

An algorithm solves a problem in time O(g(n)) if, when it is provided with a

problem instance of length n (i.e. the binary string of the encoding has length n),

the algorithm can produce the solution in at most O(g(n)) time.

3.2.2 Polynomial Time Solvable Problems

Definition 3.2.6 (polynomial time solvable problem)

A problem is polynomial time solvable if there exists an algorithm A that

solves it in time O(nk) for some constant k, where n is the length of the input.

The algorithm A is called a polynomial time algorithm.

The set of all polynomial time solvable problems is usually denoted as P. They

are generally considered tractable.

Definition 3.2.7 (complexity class P)

The complexity class P is defined as the set of concrete decision problems that

are solvable in polynomial time.

An example of a problem in P is Path(k). An algorithm has been specified

that can do this in polynomial-time.

Since polynomials are closed under addition, multiplication and composition, P

also has nice closure properties. For example, if an algorithm makes a fixed number

of calls to a polynomial-time subroutine, it is still polynomial. If the output of

one polynomial-time algorithm is fed into another polynomial-time algorithm, the

composite algorithm is still polynomial-time. These properties are essential for

most proofs involving polynomial-time algorithms.

3.2.3 Polynomial Time Verifiable Problems

Definition 3.2.8 (polynomial time verifiable problem)

A problem is polynomial time verifiable if there exists a two-input polynomial-

time algorithm A which, given a problem instance and a solution, verifies that the

solution is correct. The algorithm A is called a verification algorithm. The

solution is often referred to as a certificate which certifies that the instance is

indeed an instance of the given problem.

For example, consider the problem Path(k). Given a specific instance (i.e. a

graph and two vertices) and a solution (i.e. a path p between the two vertices),

it can easily be checked whether the length of the path is at most k. If so, p can

be viewed as a certificate that the instance indeed belongs to Path(k).

The set of all polynomial time verifiable problems is usually denoted as NP.

28 Chapter 3. Provably Secure Hashing

Definition 3.2.9 (complexity class NP)

The complexity class NP is the set of concrete decision problems that are

verifiable in polynomial time.

Path(k) is in NP. However, since it is also in P, nothing is gained. Verifying a

solution takes about as long as finding one from scratch. In fact, any problem in

P is automatically also in NP, since given a problem instance and a solution, the

solution can be found in polynomial time (since the problem is in P) and then be

compared to the given solution. If they match, then the solution is correct and

has been verified in polynomial time. Hence P ⊆ NP. The question whether NP

⊆ P, that is, whether any polynomial time verifiable problem can also be solved in

polynomial time, remains unanswered to this day. The class of problems for which

no polynomial-time algorithm is known but which can be verified in polynomial

time is called NPC. For a more precise definition more machinery is needed.

3.2.4 Formal-Language Theory

Definition 3.2.10 (alphabet)

An alphabet Σ is a finite set of symbols.

Definition 3.2.11 (language)

A language L over an alphabet Σ is a set of strings made up of symbols from Σ.

The language of all strings over Σ is Σ∗.

The most commonly used alphabet is Σ = {0, 1} and a language over this

alphabet is {0, 1}∗.
The set of instances I of any decision problem Q can be represented as a

language. When every instance is encoded as a binary string, I can be taken

to be {0, 1}∗. Note that not every string in I = {0, 1}∗ may “make sense” as

a problem instance, but this does not matter because we can simply define the

problem solution for these strings to be 0.

Since Q is entirely characterised by those problem instances that produce a 1,

we can view Q as a language L over {0, 1} where L = {x ∈ {0, 1}|Q(x) = 1}. In

other words, L ⊆ I is the set of problem instances which produce a 1. This way,

every decision problem can be described as a language L ⊆ {0, 1}∗.
This formal-language framework now allows a more concise relation between

decision problems and the algorithms that solve them.

Definition 3.2.12 (accept/reject)

An algorithm A accepts a string x ∈ {0, 1}∗ if A(x) = 1 and rejects x if A(x) = 0.

The language accepted by A is L = {x ∈ {0, 1}∗|A(x) = 1}.

Definition 3.2.13 (decide)

A language L is decided by an algorithm A if every binary string is either accepted

or rejected by A.

3.2. NP-Complete Problems 29

Notice that there is a subtle difference between accepting and deciding a lan-

guage. An algorithm which accepts a language L (i.e. which accepts all x ∈ L)

need not necessarily reject all strings y /∈ L. It may also produce no output for

these strings (e.g. loop forever). An algorithm which decides a language L must

either accept or reject every element x ∈ L.

Using this terminology, a complexity class can now be defined as a set of

languages, membership in which is determined by a complexity measure (such as

running time) on an algorithm that determines whether a given string belongs to

a certain language.

The definition of P can be stated as

P = { L ⊆ {0, 1}∗| ∃ algorithm A that decides L in polynomial time }
and

NP = { L ⊆ {0, 1}∗| ∃ algorithm A that verifies L in polynomial time }
where a verification algorithm A is now more precisely defined as a two-

argument algorithm, where one argument is an ordinary input string x ∈ {0, 1}∗
and the other is a binary string y (called certificate), which verifies x if there exists

a certificate y such that A(x, y) = 1. The language verified by A is then

L = {x ∈ {0, 1}∗| there exists a y such that A(x, y) = 1 }.

3.2.5 NP-complete Problems

Finally we can give a definition of the class NPC of NP-complete problems. It

is the set of problems which are polynomial time verifiable but not known to be

polynomial time solvable. All problems in NPC are “essentially equivalent” in the

sense that if any one NP-complete problem can be solved in polynomial time, then

all NP-complete problems can be solved in polynomial time. This “equivalence”

is called reducibility.

A problem Q1 can be reduced to another problem Q2 if any instance of Q1 can

be “easily rephrased” as an instance of Q2, and a solution to the instance of Q2

provides a solution to the instance of Q1. That means that if Q2 can be solved,

Q1 can also be solved, hence Q1 is at most as hard as Q2. Describing Q as a

language L, this can be stated as

Definition 3.2.14 (polynomial-time reducible)

A language L1 is polynomial-time reducible to the language L2 (write L1 ≤ L2)

if there exists a polynomial-time computable reduction function (meaning there

exists a polynomial-time algorithm that can compute this function)

f : {0, 1}∗ → {0, 1}∗

such that for all x ∈ {0, 1}∗ : x ∈ L1 if and only if f(x) ∈ L2.

30 Chapter 3. Provably Secure Hashing

If L1 ≤ L2 then L1 is no more than a polynomial factor harder than L2. So in

this case L2 ∈ P implies L1 ∈ P .

It can also be seen quite easily that this relation is symmetric. If L1 ≤ L2 then

L2 ≤ L1 is also true.

Definition 3.2.15 (NP-complete)

A language L is NP-complete if

1. L ∈ NP and

2. L′ ≤ L for every L′ ∈ NP.

Let NPC denote the set of NP-complete problems.

An example of an NP-complete problem is HamCycle: “does a given graph G

have a Hamiltonian cycle (i.e. a cycle that visits each vertex of G)?” HamCycle is

clearly in NP, because given a graph and a cycle, it can be easily verified that it

is in fact a Hamiltonian cycle. But given a (sufficiently large) graph, it is “very

hard” to find a Hamiltonian cycle or even to decide if one exists.

Definition 3.2.16 (NP-hard)

A language L is NP-hard if it satisfies property 2 in the above definition.

Property 2 requires that any language L′ ∈ NP is reducible to an NP-complete

language L, hence L is at least as hard as any other language L′ ∈ NP . That is

why the languages in NPC are often referred to as the “hardest” languages in NP.

Since the relation “≤” is symmetric, any language in NPC is no more than

a polynomial factor harder than any other language in NPC, so all languages in

NPC can be considered “equivalent” and they can all be reduced to each other.

Hence to prove a language NP-complete, it only has to be reduced to one language

which is already known to be NP-complete. This is stated in the following

Lemma 3.2.17

If L is a language such that L′ ≤ L for some L′ ∈ NPC, then L is NP-hard. If

L ∈ NP , then L ∈ NPC.

Hence to show that a language L is in NPC, one has to do the following:

1. Show that L ∈ NP .

2. Select a known language L′ ∈ NPC.

3. Describe an algorithm A that computes a function f mapping every instance

of L′ to an instance of L.

4. Prove that the function f satisfies x ∈ L′ if and only if f(x) ∈ L for all

x ∈ {0, 1}∗.
5. Prove that the algorithm A runs in polynomial time.

This method is usually used to prove that a problem in cryptography is NP-

complete, that is, sufficiently hard. Hundreds of proven NP-complete problems

exist, so it is often easy to select an appropriate one for a proof. It remains to

3.2. NP-Complete Problems 31

answer the question why NP-complete problems are thought to be so hard that

cryptographers are willing to put their trust in the intractability of these problems.

It has been proven that

Theorem 3.2.18 (P = NP?)

If any NP-complete problem is in P, then P = NP. If any NP problem is not

polynomial-time solvable, then NPC and P do not intersect.

This essentially says that if one NP-complete problem is polynomial-time solv-

able, then any NP-complete problem is polynomial-time solvable; and if one NP-

complete problem is not polynomial-time solvable, then no NP-complete problem

is polynomial-time solvable. In diagrams, the two possible scenarios are:

P = NP = NPC

NP

NPC
P

The so-called “P 6= NP question” was posed in 1971 by Stephen A. Cook

[10] and has not been answered despite years of extensive research. No one has

been able to prove a superpolynomial-time lower bound for any NP-complete

problem. Still, most scientists believe that the scenario on the left is true, since no

polynomial-time algorithm has been found for any NP-complete problem despite

years of study. Given the wide range of NP-complete problems that have been

studied so far, without any progress toward a polynomial-time solution, “it would

be truly astounding if all of them could be solved in polynomial time”, says

Cormen [11].

3.2.6 NP-complete Problems in Cryptography

Hundreds of problems from different areas (graph theory, network design, sets

and partitions, sequencing and scheduling, mathematical programming, algebra,

number theory, logic, program optimisation and others) have been proven to be

NP-complete to this date (for an elaborate list see [20]), and many of them can be

related to cryptographic problems, some even in very natural ways (for example,

the subset sum problem, see Section 4.2, and the Hamiltonian cycle problem, see

Chapter 5). However, there are some problems with this approach. The obvious

problem is that it is unclear whether NP-complete problems are really hard, and

32 Chapter 3. Provably Secure Hashing

a polynomial-time algorithm for any of them would make them all tractable, thus

destroying any cryptographic scheme based on them.

The other major issue is that an NP-complete problem is only hard in the

general case, not in every case. NP-completeness only guarantees that there is

no polynomial-time algorithm which solves every instance of a problem, but there

may always be special cases which are easy to solve. For some NP-complete

problems algorithms exist that solve a large percentage of instances efficiently,

which would be disastrous for a cryptographic application. It takes some analysis

to determine how many such special cases exist, and it is desirable to show that

at least most cases are intractable (or the average case is intractable), if not every

case.

Some NP-complete problems can be defeated with the help of approximation

algorithms. These are algorithms that find near-optimal solutions to optimisa-

tion versions of NP-complete problems in polynomial running time. In practice,

near-optimality is sometimes good enough. It must be ensured that NP-complete

problems on which cryptographic security relies do not have efficient approxima-

tion algorithms. And still it is always possible that one will be developed in the

future. There are, however, NP-complete problems for which it has been proven

that they have a version which is “absurdly hard to approximate” [69], that is,

that no efficient approximation algorithms exist. In fact, there is an interesting

theory of inapproximable NP-hard problems. Arora [1] shows that for certain NP-

hard problems, achieving a reasonable approximation is no easier than computing

optimal solutions. In other words, approximation of these problems is NP-hard.

Another approach is to consider algorithms that solve “typical” or “average”

instances instead of worst-case instances of NP-complete problems. In practice,

however, identifying “typical” instances is not easy [1].

Lastly, we should comment on the rather philosophical question why poly-

nomial-time solvable problems are considered tractable or even efficient. One

could argue that a polynomial-time solvable problem which can only be solved in

O(n100) surely is computationally infeasible. This is true, but in practice, there

are very few practical problems that require time on the order of such a high-

degree polynomial. The polynomial-time computable problems encountered in

practice typically require much less time. Therefore there is good reason to think

that a polynomial-time problem will be feasible in practice. The other reason why

all polynomial-time solvable problems are put together in one class is the useful

closure properties mentioned earlier (see Section 3.2.2).

Altogether, it does not matter whether there are polynomial-time solvable

problems which are really not feasible in practice. What is important in crypto-

graphy is that anything which is not polynomial-time solvable is computationally

infeasible. Algorithms whose time complexity cannot be bounded by a polyno-

mial, but only by an exponential function, are referred to as exponential time

3.3. Domain Extender Algorithms 33

algorithms and generally considered inefficient, because most of them are merely

variations on exhaustive search, whereas polynomial-time algorithms are generally

made possible only through gain of some deeper insight into the structure of a

problem.

3.3 Domain Extender Algorithms

A common approach to designing hash functions is to perform two steps. In

the first step, an (efficient) compression function h is designed, which hashes a

(relatively short) n-bit string to a shorter m-bit string, that is, takes an input of

fixed length and compresses it by n−m bits to an output of a shorter fixed length.

Then a domain extender algorithm is used to build a hash function h′ from the

compression function h. The function h′ hashes inputs of arbitrary length l (for

l > n) to produce an m-bit hash value.

The compression function h is usually constructed to achieve some specified

security property, and the domain extender is designed to preserve this property.

For example, a good domain extender algorithm is one that produces a hash

function h′ which is collision resistant if h is collision resistant. This two-step

process makes it easier to design hash functions as well as to prove specific security

properties.

A very efficient and also simple, natural and well-known extender algorithm

is the one proposed independently by Merkle [41] and Damg̊ard [14] at CRYPTO

’89. It is widely used and has become known as the Merkle-Damg̊ard extender.

It uses a compression function h : {0, 1}n → {0, 1}m to build a hash function

h′. The input message M is split into a first block M0 of length n and L blocks

M1, . . . ,ML of length n − m. Then the blocks are processed consecutively. The

output of one step (m bits) is concatenated with a new message block (n − m

bits) to form the n-bit input of the next iteration.

Notation 3.3.1

For two bit strings x and y, let x||y denote the concatenation of x and y.

Definition 3.3.2 (Merkle-Damg̊ard extender)

Let h : {0, 1}n → {0, 1}m be a compression function and let l = n + L · (n − m)

with L ≥ 0. The Merkle-Damg̊ard extender defines the hash function

h′ : {0, 1}l → {0, 1}m

which computes h′(M) as follows:

1. Let the message be M = M0||M1||M2|| . . . ||ML where M0 ∈ {0, 1}n and

Mi ∈ {0, 1}n−m for i = 1, . . . ,L.

2. Let x1 = h(M0) and iterate xi+1 = h(xi||Mi) for i = 1, . . . ,L.

3. Then h(M) = xL+1.

34 Chapter 3. Provably Secure Hashing

The process can be demonstrated by the following diagram:

b b b
M0 x1 x2 xL h(M)

M1 M2 ML

h h h h

Often the first message block is also initialized to x0 = 0n (a string of zeros

of length n) and the message is split up into blocks x1, . . . , xL of equal length. If

the hash function is “good”, this does not make a difference, as 0n is mapped to

a random-looking string.

The message may not always have the correct length of n+L·(n−m) for some

L (or L·(n−m) in the case just mentioned) to be able to be split up into blocks of

the given length. In this case, padding is performed. Extra bits are appended to

the end of the message in a specified way to make the final block the right length.

Padding is not a trivial process; there are many ways of doing it insecurely that

open up opportunities for different attacks. Merkle and Damg̊ard were aware of

this, and they both suggested padding the message with zeros and then appending

a binary representation of the length of the original message at the end. An extra

block may have to be added if the message length more than fills up (does not fit)

the last block. Although padding with zeros hides how many zeros were originally

present at the end of the message (i.e. before adding the padding zeros), the

length at the end allows the recovery of the original message. To make this

process even more unambiguous, the length of the binary representation is often

fixed, for example to 64 bits. It must be noted, however, that this puts at least a

theoretical limit of 264 bits on the total message length. This method of padding

also prevents length extension attacks on hash functions used as MACs.

Another method of padding is adding a single bit 1 and then zeros and then the

original message length, as it is done for MD5 (Section 2.1) and SHA-1 (Section

2.2).

These are considered the most secure ways of padding and are therefore the

most widely used, but there are other methods. For a discussion see Preneel’s

PhD thesis [47].

The nice thing about the Merkle-Damg̊ard extender is that it preserves collision

resistance. If a collision resistant compression function h is used, then the resulting

hash function h′ is also collision resistant. This property and the efficiency of the

extender have made it extremely popular and all hash functions used in practice

today are based on it, even the ones for which collision resistance cannot be proven,

such as MD5 and SHA-1.

3.4. Summary 35

It should also be mentioned that there is an even more efficient domain exten-

der, also independently proposed by Merkle as well as Damg̊ard in 1989, called tree

hashing or parallel hashing. It can be used if several parallel processors are avail-

able and requires a compression function h : {0, 1}2m → {0, 1}m. The message M

is split into 2k blocks M1, . . . ,M2k for some k ∈ Z
+ (after appropriate padding),

and each processor processes two blocks at a time. The procedure becomes clear

from the diagram:

b b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

h

h h

h h h h

h h h h h

h(M)

M1M2 M3M4 M5M6 M7M8 M2k−1M2k

Tree hashing has also been proven to preserve collision resistance [41, 14].

3.4 Summary

Once different security properties have been proven for a hash function, it can be

trusted to a much greater degree than any custom-designed hash function. Dif-

ferent types of provably secure hash functions may be used for different purposes.

This chapter has laid the foundations for the following discussion of two of these

types by giving a short overview of the theory of NP-completeness. It has also

explained the Merkle-Damg̊ard extender, a concept used in the design of many

(custom-designed and provably secure) hash functions.

Chapter 4

Universal One-Way Hash Functions

After it became clear that collision resistant hash functions are very hard to de-

sign, Naor and Yung proposed a new cryptographic primitive they called universal

one-way hash functions [43]. Although they achieve weaker security than CRHFs,

they still suffice for many important cryptographic applications. Naor and Yung

first used them to construct a signature scheme they called one-way based secure

digital signature scheme, which they proved secure against the most general at-

tack on digital signatures (i.e. existentially unforgeable under an adaptive chosen

plaintext attack) assuming only the existence of a one-way function. Previously,

all provably secure signature schemes had been based on the stronger mathemat-

ical assumption that trapdoor one-way functions exist. More specifically, they

constructed a UOWHF from a one-way function and showed that it suffices for

hashing messages prior to signing them with a digital signature scheme. It should

be noted, however, that the signer can cheat by choosing the key before the target

message, making this scheme vulnerable to attacks by the signers.

When they were first introduced in 1989, UOWHFs were more of theoretical

interest and far away from any practical use. But since then, many UOWHF

designs have been proposed and made more practical, and they are now considered

an attractive alternative to CRHFs by many.

This chapter gives a more formal definition and explains as an example one

of the most natural and promising designs of UOWHFs, the subset sum hash

function.

4.1 Universal One-Way Hash Functions

Simply stated, a UOWHF is a family of hash functions, indexed by a key, that

are one-way and second preimage resistant. More formally, security is defined

in terms of an adversary algorithm which tries to find second preimages. The

algorithm first has to commit to a challenge input and is then given a key which

selects the hash function from the family. Then it attempts to produce a second

preimage for that particular hash function.

Definition 4.1.1 (UOWHF)

Let m and n be positive integers with m ≤ n. A (t, ε) universal one-way hash

37

38 Chapter 4. Universal One-Way Hash Functions

function family is a finite collection H of functions

hK : {0, 1}n → {0, 1}m

indexed by a key K ∈ K (where K is the key space), and such that any attack

algorithm A = (A1,A2) running in time t has success probability at most ε in the

following game:

• A Commits: A1 runs (with no input) and outputs a hash function input

s1 ∈ {0, 1}n and a state.

• Key Sampling: A key K ∈ K is chosen uniformly at random and revealed

to A.

• A Collides: A2 runs with input K, s1 and state and outputs a second hash

function input s2 ∈ {0, 1}n.

A succeeds in the game if it finds a valid collision for hK , i.e. if s1 6= s2 but

hK(s1) = hK(s2).

Although this really defines a UOWHF family, it is often just referred to as a

UOWHF.

The state in this definition simply means that A may keep a state throughout

the entire game. A consist of two parts A1 and A2 that are executed one after

the other but essentially, A keeps running and may thus remember some extra

information. Formally, this state information is described as an output of A1 and

an input to A2.

From this definition it becomes clear why the keys are needed. When using

the concept of an attacker algorithm, the security wanted cannot be defined for a

single hash function. The essence of the property of second preimage resistance is

that the first input is fixed and an adversary has to find a collision for this given

input. Since the adversary algorithm is allowed to choose the first input in this

model, it cannot know the hash function at the time it commits (otherwise it could

use information about the hash function to choose the input that would make it

easier to find a second preimage). Only after the algorithm has committed to the

first input can it know which hash function it will be using. That is why formally

the property of second preimage resistance can only be defined for a family of

hash functions. It is important that each function of the family is selected with

equal probability, that is, uniformly at random from the family.

So essentially, this is simply another way of making sure that the attacker

cannot choose the first input depending on the hash function. This is slightly dif-

ferent from the concept used for one-way hash functions, where the hash function

is fixed and the first input is given to the algorithm, which then attempts to find

a collision for that input.

4.1. Universal One-Way Hash Functions 39

Notice that the so-called keys are not secret keys. They do not refer to any

secret knowledge, which is the common use of the term “key” in cryptography.

The keys are rather the parameters that index the members of the family and are

publicly known.

Also note that the members of this family are not proper hash functions in the

sense that they take an input of fixed length n rather than of arbitrary length.

This is where the Merkle-Damg̊ard extender defined in Section 3.3 comes into play.

It is in fact a very common methodology to first construct a so-called compression

function which hashes a (relatively short) n-bit string to a shorter m-bit string,

hence compressing the input by n − m bits, and then using a domain extender

(such as Merkle-Damg̊ard) to build a hash function which compresses an input

of arbitrary length to an m-bit output. The point of this system is that security

can be proven in two steps: If it can be proven that a domain extender preserves

certain properties of a compression function, then it remains only to show that

the compression function has the desired properties.

The simplest and most natural such domain extender is the well-known and

efficient Merkle-Damg̊ard extender. Merkle and Damg̊ard both proved indepen-

dently [41, 14] that their extender preserves collision resistance. In other words,

if a compression function is collision resistant, then the hash function obtained

by applying the Merkle-Damg̊ard extender to it is also collision resistant. Un-

fortunately it was shown by Bellare and Rogaway [4] that the Merkle-Damg̊ard

extender is not guaranteed to preserve second preimage resistance. Hence the

construction cannot be used for extending a UOWHF in general.

Hong, Preneel and Lee [26] showed that there is a way of using the Merkle-

Damg̊ard extender to build hash functions with UOWHF security. They defined a

stronger security for compression functions called higher order UOWHF security

and showed that these higher order UOWHFs can be used to build hash functions

with UOWHF security from the Merkle-Damg̊ard extender.

Before giving the definition of higher order UOWHFs, we need to step back

and look at ordinary UOWHFs again. Instead of selecting the key K after the

algorithm A has committed to the first input, it is also possible to first select K

without revealing it to A, then letting A commit, and then giving A the selected

key. Since the random selection of K is independent of A1’s behaviour, the order

of these actions makes no difference to the success probability of A, as long as

the key is not revealed to the adversary until after it has committed to an input.

Hence the game of Definition 4.11 is essentially equivalent to the following game:

• Key Sampling: A key K ∈ K is chosen uniformly at random (but not yet

revealed to A).

• A Commits: A1 runs (with no input) and outputs a hash function input

s1 ∈ {0, 1}n and a state.

40 Chapter 4. Universal One-Way Hash Functions

• Key Revealed: The key K is given to A.

• A Collides: A2 runs with input K, s1 and state and outputs a second hash

function input s2 ∈ {0, 1}n.

When considering UOWHF security in terms of this game, a simple extension

can be made: The adversary A is allowed to make r adaptive queries to an oracle

for the selected hash function hK before committing. This means that without

knowing which function hK is being used, the adversary can give r inputs qi to the

oracle and will receive the values hK(qi) for i = 1, . . . , r in return. Each query may

depend on the results of all previous queries (this is what is meant by “adaptive”).

A may then use this extra information obtained from the queries to choose the

first input. A function that is secure even under this stronger attack is called an

rth order UOWHF and also denoted by UOWHF(r).

Definition 4.1.2 (rth order UOWHF (UOWHF(r)))

Let m and n be positive integers with m ≤ n. A (t, ε) rth order universal

one-way hash function family is a finite collection H of functions

hK : {0, 1}n → {0, 1}m

indexed by a key K ∈ K (where K is the key space), and such that any attack

algorithm A = (A1,A2) running in time t has success probability at most ε in the

following game:

• Key Sampling: A uniformly random key K ∈ K is chosen (but not yet

revealed to A).

• Oracle Queries: A1 runs (with no input) and makes r adaptive queries

q1, . . . , qr ∈ {0, 1}n to an oracle for hK , receiving answers y1, . . . , yr ∈ {0, 1}m

where yi = hK(qi) for i = 1, . . . , r.

• A Commits: A1 outputs a hash function input s1 ∈ {0, 1}n and a state.

• Key Revealed: The key K is given to A.

• A Collides: A2 runs with input K, s1 and state and outputs a second hash

function input s2 ∈ {0, 1}n.

A succeeds in the game if it finds a valid collision for hK , i.e. if s1 6= s2 but

hK(s1) = hK(s2).

Clearly a 0th order UOWHF is just a normal UOWHF. Also, an rth order

UOWHF is automatically a tth order UOWHF for any t ≤ r. The converse,

however, is not true. A UOWHF is not necessarily a higher order UOWHF;

in fact there exist UOWHFs which are not even first order UOWHFs [4]. It is

also interesting to note that Hong, Preneel and Lee [26] show that the classes of

UOWHFs of same order form a chain between CRHF and UOWHF classes.

4.2. The Subset Sum Hash Function 41

Using this concept of rth order UOWHFs, Hong, Preneel and Lee proved that if

the order of the underlying UOWHF is r, then the (r+1)-round Merkle-Damg̊ard

extension is also a UOWHF. Here (r+1) is often called the extension factor.

Note that there are other domain extender algorithms which preserve UOWHF

security without the higher order property. Bellare and Rogaway [4] proposed two

types of constructions, one with a linear structure which was later improved by

Shoup [62] and is usually called the Shoup XOR-mask domain extender, and the

other with a tree structure which extended the work of Naor and Yung [43] and

was further improved by Sarkar [54, 55] and Lee, Chang, Lee, Sung and Nandi

[35]. However, these extenders all have the undesirable property that the length

of the key increases with the length of the message. Hence it is still preferable to

use Merkle-Damg̊ard where possible, since it keeps the key size constant.

Finally, after having taken in the above concepts, a more precise definition

of security can be stated. Given an adversary algorithm A which succeeds in a

specified game with probability ε in running time t, security is high if A succeeds

with low probability even if it is given a lot of time, hence if ε is small and t is

large, or t
ε

is big. Similarly, security is low if A succeeds with high probability

in little computation time, hence if ε is large and t is small, or t
ε

is small. Most

authors scale this ratio by taking the (base 2) logarithm of the run-time/success

probability ratio.

Definition 4.1.3 (security)

The security of a UOWHF is defined as log2(
t
ε
), where t is the running time and

ε is the success probability of an attacker algorithm in the game from Definition

4.1.1.

The security of a UOWHF(r) is defined as log2(
t
ε
), where t is the running

time and ε is the success probability of an attacker algorithm in the game from

Definition 4.1.2.

4.2 The Subset Sum Hash Function

Do universal one-way hash functions really exist? Yes, many constructions have

been proven to be UOWHFs or even higher order UOWHFs. One natural con-

struction that has recently been proven to achieve higher order UOWHF security

is the subset sum hash function. It is based on the well-known NP-complete subset

sum problem.

The subset sum problem is: Given a set a of n numbers, each m bits long,

and a target sum T , find a subset s ⊆ a whose sum is T . Addition is performed

modulo an m-bit integer p.

Definition 4.2.1 (Subset Sum Problem (SubSum(n,m, p)))

Let m,n, p ∈ Z
+ with m < n and 2m−1 < p ≤ 2m. Given a uniformly random

42 Chapter 4. Universal One-Way Hash Functions

vector of integers a = (a1, . . . , an) ∈ Z
n
p and a target integer T chosen uniformly

at random from Zp, find a subset s = (s1, . . . , sn) ∈ {0, 1}n such that

n
∑

i=1

siai ≡ T (mod p).

The condition 2m−1 < p ≤ 2m ensures that p − 1 is exactly m bits long and

therefore addition modulo p always results in an integer of m bits.

The subset sum problem is a special case of the knapsack problem and was

first shown to be NP-complete by Richard Karp in 1972 [30] by transformation

from the partition problem. Karp proved the NP-completeness of 21 well-known

combinatorial and graph theoretical problems, each infamous for their intractabil-

ity, just one year after the first NP-complete problem (the boolean satisfiability

problem) had been demonstrated by Cook [10].

The first to suggest using subset sum in cryptography were Merkle and Hellman

in 1978 [42], and many schemes in public key cryptography have since been based

on the subset sum problem. Since computing subset sums only involves addition,

these schemes are much more efficient than schemes based on the intractability

of number theoretic problems such as factoring and discrete logarithms, which

involve multiplication or even exponentiation. However, none of these schemes

have been proven to be as secure as subset sum (meaning it could not be proved

that breaking them is as hard as solving the subset sum problem), and, in fact,

most of them have been broken.

Impagliazzo and Naor [28] were the first to use the subset sum problem to

construct a hash function (and a pseudo-random generator). They describe their

approach of “only” constructing a hash function rather than an entire public

key cryptosystem “less ambitious”, since “many important tasks in cryptography

[such as digital signatures and pseudo-random generation] do not require the full

power of public key cryptography”.

The subset sum hash function is defined as follows:

Definition 4.2.2 (subset sum hash function HSS(n,m, p))

Let m,n, p ∈ Z
+ with m < n and 2m−1 < p ≤ 2m. The subset sum hash

function family HSS(n,m, p) is the collection of functions

ha :

{

{0, 1}n → {0, 1}m

s 7→ ha(s) :=
∑n

i=1 siai (mod p)

where

• a = (a1, . . . , an) ∈ Z
n
p is the key (hence K = Z

n
p is the keyspace) and

• s = (s1, . . . , sn) ∈ {0, 1}n is the message or hash function input.

4.2. The Subset Sum Hash Function 43

It is clear immediately that inverting any hash function ha ∈ HSS is as hard as

solving the subset sum problem. The key corresponds to the set of numbers, the

message corresponds to the subset, and the hash value corresponds to the target

integer. Given the key and a hash value, it is hard to find a message that hashes

to the given value. That makes the subset sum hash function one-way in a natural

way.

More than that, assuming the hardness of the subset sum problem, the subset

sum hash function HSS was also proven to be a UOWHF by Impagliazzo and

Naor [28]. Their exact result can be stated as follows.

Theorem 4.2.3 (Impagliazzo-Naor)

If the subset sum problem SubSum(n,m, p) is (t, ε)-hard, then the subset sum hash

function family HSS(n,m, p) is a (t′, ε′) universal one-way hash function family,

where t′ = t − O(mn) and ε′ = 2nε.

Steinfeld, Pieprzyk and Wang [64] further strengthened this result by showing

that the subset sum hash function family HSS is actually an rth order UOWHF for

small r = O(log m), still assuming only the hardness of the subset sum problem

SubSum(n,m, p). More concretely, they bounded the way the security of HSS as

an rth order UOWHF deteriorates with increasing r. Their exact result is

Theorem 4.2.4 (Steinfeld-Pieprzyk-Wang)

Let m,n, p ∈ Z
+ with m < n, p a prime satisfying 2m−1 < p ≤ 2m, and r <

log3(p) − 1. If the subset sum problem SubSum(n,m, p) is (t, ε)-hard, then the

subset sum hash function family HSS(n,m, p) is a (t′, ε′) rth order universal one-

way hash function family, where

t′ = t − O(r2n · TM(p)) and ε′ = 2r+1(n − r) · ε + 3r+1

2m

and TM(p) denotes the time to perform a multiplication modulo p.

In other words, the function’s security as an rth order UOWHF deteriorates

by (at most) about r bits relative to the UOWHF case r = 0. This can now

be combined with the result of Hong, Preneel and Lee [26] to conclude that the

Merkle-Damg̊ard extender can be applied to the subset sum compression function

with extension factor r + 1 while losing (at most) about r bits of security.

The functions in the subset sum hash function family HSS(n,m, p) hash an

n-bit input to an m-bit output. Hence HSS(n,m, p) can be used as a compression

function family to construct a hash function family H′
SS(l,m) which hashes an

l-bit input to an m-bit output, where l could be much larger than n.

The Merkle-Damg̊ard extender can be applied as follows. First the message

needs to be padded to a length of l = n + L · (n − m) bits, where L is a positive

integer. This means that the message can be divided into a total of L+ 1 blocks,

where the first block has n bits and all other blocks have n − m bits.

44 Chapter 4. Universal One-Way Hash Functions

So assume that l = n + L · (n − m) and define the Merkle-Damg̊ard family

H′
SS(l,m) as follows:

Definition 4.2.5 (H′
SS(l,m))

Let l = n + L · (n − m) where L ∈ Z+ and n,m, p as before. A key a ∈ Z
n
p of

H′
SS(l,m) is just a uniformly random key of HSS(n,m, p). The Merkle-Damg̊ard

hash function family H′
SS(l,m) is the family of functions h′

a. An input message

M ∈ {0, 1}l is hashed using the function h′
a as follows:

1. Split M into one n-bit block x0 ∈ {0, 1}n and L = l−n
n−m

(n − m)-bit blocks

M1, . . . ,ML.

2. For i = 1, . . . ,L, compute xi+1 = ha(xi||Mi).

3. Return xL+1 ∈ {0, 1}m.

Since Steinfeld, Pieprzyk and Wang [64] have shown that HSS(n,m, p) is an rth

order UOWHF for some r > 0, r = O(log m), the result [26] by Hong, Preneel and

Lee leads to the conclusion that the family H′
SS(l,m) is a UOWHF for l ≤ (r +

1)(n−m), assuming only the hardness of the subset sum problem SubSum(n,m, p).

As promising as these results sound, there are several problems that do not

quite allow the subset sum hash function to be used yet. One of them has already

been mentioned and concerns the length of the message. Hash functions are

required to hash messages of arbitrary length, but H′
SS(l,m) restricts the input

length l to at most r + 1 blocks of length n − m. Since the security of an rth

order UOWHF drops by approximately r bits (compared to the corresponding

0th order UOWHF), the security of H′
SS(l,m) drops by one bit for every round

in the Merkle-Damg̊ard extension and therefore for every block of the message.

That leads to a trade-off between message length and security and may make the

message length quite small if one desires to keep reasonable security. Also, since

r = O(log m), longer messages will require a longer hash value.

Another problem is the key size. In the compression function HSS(n,m, p),

each of the n message bits requires one m-bit number in the key. Hence the key

a = (a1, . . . , an) consists of n m-bit numbers and is therefore n · m bits long.

Furthermore, Steinfeld, Pieprzyk and Wang [64] show that m ≥ 1352 is needed to

achieve reasonable security (more concretely, to make the success probability of a

dangerous attack (a lattice attack) less than 2−80). Since m < n, that results in a

key size of more than 13522 = 1827904 bits. This is better than the key size that

results from using one of the other domain extenders, as Steinfeld, Pieprzyk and

Wang [64] have shown, but it is still very long.

Finally, there remains the general problem with relating the security of a hash

function to an NP-complete problem. An NP-complete problem is hard in the

worst case, but not necessarily hard in every case. Some or even many instances

of an NP-complete problem may be easy to solve; NP-completeness simply says

4.2. The Subset Sum Hash Function 45

that there is no efficient algorithm which solves all cases. The subset sum problem

can for example be solved easily if the target number just happens to be zero or

one of the numbers in a, to give a very obvious example. This is not directly a

problem, but before using the subset sum hash function, one should at least be

sure that the average case is hard (and not just the worst case). It makes sense

to think that most cases will be hard, but we could not find any work on the

proportion of “easy” instances of the subset sum problem. This might be worth

further investigation.

There exist very good approximation algorithms for the subset sum problem.

However, an approximation is not good enough. To find a valid preimage of a given

hash, one needs to find a subset that sums up exactly to that value, and not one

that sums up to a value close to the target. But does a subset that approximates

an integer look very similar to a subset that actually gives the integer? Also, if any

sum of numbers can be specified with at most m bits, then the polynomial time

approximation algorithm for subset sum can be turned into an exact algorithm

(i.e. one that solves subset sum) with running time polynomial in n (the number

of numbers in the set) and 2m [65]. This is an exponential-time algorithm and

may not be efficient enough to be of any use, depending on the size of m. Still,

these problems should be further investigated.

Although more work has to be done to make UOWHFs and in particular

the subset sum hash function usable in practice, the approach seems promising.

Subset sum is rather efficient and at least there is a concrete and proven idea of

how secure it is, even if there are some issues left to research.

Chapter 5

A New Preimage Resistant Hash

Function

After having thoroughly investigated the techniques used to design hash functions

and prove different security properties, we now propose a new hash function.

There are several reasons motivating the design.

Firstly, creating something new is much more interesting than just investigat-

ing what other people have done. After all, good new hash functions are desper-

ately needed, and finding one could potentially be a significant contribution to

the research on cryptographic hash functions.

Secondly, seeing the natural way in which the subset sum problem could be

turned into a hash function led to the question whether there are any other NP-

complete problems that could serve the same purpose. In the very elaborate list of

several hundred NP-complete problems in [20], I found the graph theory problems

particularly inspiring and thought that the Hamiltonian cycle problem might be

a suitable choice. Out of that came the design of a new hash function, which is

based on this problem. It is called HamHash for obvious reasons.

Upon investigating the nature of HamHash and continually modifying the con-

struction to achieve certain properties, it turned out to be a very unconventional

design. It is provably a PRHF (recall from Chapter 3 that a PRHF is preimage

resistant). HamHash is also non-deterministic: Every time the hash is applied to

a message, it may produce a different result. This is definitely an unconventional

way of hashing. In fact we are not aware of any previous work on hash functions

which are only preimage resistant, or on non-deterministic hashing (besides the

Digital Signature Algorithm (DSA), which is related in the sense that it is non-

deterministic, but it is not directly a hash function). Still, these properties are

sufficient for many authentication purposes such as password storage. The weak

security assumption makes them much easier to design than CRHFs, OWHFs or

even UOWHFs, and they become an attractive alternative.

This chapter explains the construction of HamHash and examines its proper-

ties. It also presents some possible applications and a sample implementation.

47

48 Chapter 5. A New Preimage Resistant Hash Function

5.1 Graph Theory

A quick summary of the graph theory background needed for the construction of

HamHash seems appropriate at this point.

Definition 5.1.1 (graph)

A graph G is an ordered pair G = (V,E) where

• V = {1, . . . , v} is a finite set of v vertices and

• E is a finite set of unordered pairs {u,w}, called edges, of distinct vertices

u,w ∈ V .

Note that in the more general literature on graph theory this would be referred

to as a

• finite (V and E are finite),

• undirected (edges are unordered pairs of vertices),

• simple (no loops, i.e. edges are distinct pairs of vertices, and no repeated

edges, i.e. E is not a multiset), and

• labelled (the vertices are labelled 1, . . . , v)

graph. For the purposes of this thesis however, all graphs will be of this kind and

therefore only be called graphs. The number of vertices is always denoted by v.

Graphs are often represented as drawings, where vertices are black dots and

edges are lines joining two vertices.

b

b

b

b

b

b

1

2

3

4

5

6

A graph can also be represented as an adjacency matrix. For a graph G = (V,E)

on v vertices this is simply a matrix A = (aij) ∈ {0, 1}v×v of size v × v, where

an entry aij = 0 if the edge {i, j} is not present and aij = 1 if {i, j} ∈ E. For

example, the above graph can be represented by the adjacency matrix:

A =

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

5.1. Graph Theory 49

Note that for an undirected graph, the adjacency matrix is always symmetric,

as {i, j} ∈ E if and only if {j, i} ∈ E. The entries aii on the diagonal are always

zero, since loops are not allowed.

Definition 5.1.2 (degree)

Let G = (V,E) be a graph. A vertex u ∈ V has degree d if it is incident with d

edges, that is, if there are d edges {u,w} in E.

For example, every vertex in the above graph has degree 4. Therefore, the graph

would be referred to as 4-regular.

Definition 5.1.3 (complete graph)

A complete graph is one in which all possible edges are present.

The complete graph on six vertices is:

b

b

b

b

b

b

1

2

3

4

5

6

Definition 5.1.4 (path, cycle)

A path of length l in the graph G = (V,E) is a sequence u0u1 . . . ul of distinct

vertices u0, . . . , ul ∈ V (i.e. no vertex is visited more than once) where {ui, ui+1} ∈
E for i = 0, . . . , l − 1. If l ≥ 2, u0 = ul, and all other vertices are distinct, then

u0u1 . . . ul is called a cycle.

A path of length 4 in the star graph would be 12346. An example of a cycle is

2462.

5.1.1 The Hamiltonian Cycle Problem

Definition 5.1.5 (Hamiltonian path)

A path that visits every vertex in a graph exactly once is a Hamiltonian path.

Definition 5.1.6 (Hamiltonian cycle)

A cycle that visits every vertex in a graph exactly once is a Hamiltonian cycle.

Two obvious Hamiltonian cycles in the star graph are:

50 Chapter 5. A New Preimage Resistant Hash Function

b

b

b

b

b

b

1

2

3

4

5

6

b

b

b

b

b

b

1

2

3

4

5

6

Hamiltonian cycles are named after the Irish mathematician, physicist and

astronomer Sir William Rowan Hamilton who invented the icosian game (also

called Hamiltonian game or Hamilton’s puzzle), which involves finding a Hamilto-

nian cycle along the edges of a dodecahedron, in 1857 [27].

Hamilton already knew that finding a Hamiltonian cycle in a given graph is a

non-trivial task. In fact, this problem is NP-complete.

Definition 5.1.7 (Hamiltonian cycle problem HamCycle(v))

Given a graph G on v vertices, find a Hamiltonian cycle in this graph.

This is among the first 21 problems proven to be NP-complete by Richard Karp

in 1972 [30], by transformation from the vertex cover problem. It has also been

proven that the Hamiltonian cycle problem remains NP-complete

• if G is planar, cubic, 3-connected, and has no face with fewer than 5 edges

[19],

• if G is bipartite [34],

• if G is the square of a graph [7], and

• if a Hamiltonian path for G is given as part of the instance [45].

The problem is solvable in polynomial time, however, if G has no vertex with

degree exceeding 2 or if G is an line graph [37].

5.1.2 Random Graphs

In applications it is often interesting to know how an algorithm (or hypothesis)

works on a “typical” instance: a random graph. A random graph is produced by

starting out with a set V = {1, . . . , v} of vertices and then adding edges between

these at random. Different random graph models produce different probability

distributions on graphs. The most natural, most common and most useful model

for the purposes of this thesis is the binomial model introduced by Erdös [18].

It is called G(v, p) and includes each possible edge independently with probability

p. This means that the probability of a given graph G is

Probability(G) = p|E(G)| · (1 − p)(
v

2)−|E(G)|

5.2. The Algorithm HamHash 51

where |E(G)| denotes the number of edges in G. Notice that for p = 1
2

every

graph G ∈ G(v, p) = G(v, 1
2
) has the same probability:

Probability(G) =

(

1

2

)|E(G)|

So G(v, 1
2
) represents the uniform probability space on the set of graphs with v

vertices.

5.1.3 Graph Theory and Hashing

Little work has been done on graph theory related hash functions. Some construc-

tions based on special types of graphs such as expander graphs, Cayley graphs,

graphs with large girths and Ramanujan graphs have been proposed [49, 9, 68],

but none of them are used in practice. Their security relies on special properties

of these graphs rather than NP-complete problems.

Charles, Goren and Lauter [9] have an interesting design, where each vertex in

a k-regular sparse graph has a label, and the message is used to determine a walk

in the graph. The output is the label of the final vertex in the walk, and collision

resistance is based on the fact that finding distinct paths between vertices is hard

in sparse graphs, where the edge-vertex ratio is small.

HamHash bases its security on the properties of Hamiltonian graphs (specif-

ically the hardness of finding a Hamiltonian cycle in a Hamiltonian graph) in a

much more natural way.

5.2 The Algorithm HamHash

Now it is time to present the technical details of HamHash. As mentioned before,

it is a new design, invented as a part of the work on this thesis, and based on the

Hamiltonian cycle problem.

5.2.1 The Main Idea

As a proper hash function, HamHash takes an input message (bit string) of arbi-

trary length and outputs a hash value of fixed length. The output is a graph in

the form of an adjacency matrix, which can be rearranged to form a bit string if

desired. The size of the output depends on the size of the graph, more specifically

on the number of vertices v in the graph, which must be fixed in advance.

The basic idea is as follows. The input message is first mapped to a Hamil-

tonian cycle on v vertices in a unique way. The core part of the algorithm, and

the part on which its security is based, then constructs a graph that contains this

given Hamiltonian cycle.

Later on, it can be verified that a hash belongs to a given message by re-

computing the corresponding Hamiltonian cycle from the message and checking

that it is contained in the graph given by the hash value. Conversely, finding a

52 Chapter 5. A New Preimage Resistant Hash Function

preimage given only a hash value requires finding the Hamiltonian cycle in the

graph, and is therefore very hard.

The functioning of the algorithm can best be described in the following dia-

gram:

HamHash

HamHash(M)M
Red Cyc Graph

Since a Hamiltonian cycle on v vertices can be represented by fewer bits than

an entire graph on v vertices, the construction of interpreting a message as a cycle

and then turning it into a graph would produce an output of bigger size than

the input and therefore not be a proper hash function. Hence we first apply a

reduction function Red, which reduces the arbitrary size message M to an output

that has an fixed size appropriate to represent a Hamiltonian cycle in the graph.

From this output, the Hamiltonian cycle is computed by the function Cyc. Finally,

Graph adds the edges in this cycle and more random edges to an (initially empty)

graph H, the adjacency matrix of which becomes the output of the entire hash

function HamHash.

5.2.2 Notation

Before having a closer look at the three functions Red, Cyc and Graph, we need

to define some sizes and assign some names. These are valid for the rest of this

chapter.

• M ∈ {0, 1}∗ is the input message to the hash function HamHash and there-

fore also the input to the reduction function Red.

• H = (V,E) is the graph that HamHash works with. H does not show up

in the actual algorithm (only the adjacency matrix that represents it). It is

only the idea behind the algorithm, but it is often helpful to be able to refer

to the graph directly.

• v is the number of vertices in H. The vertices are labelled 1, . . . , v, i.e.

V = {1, . . . , v}.
• m =

(

v

2

)

= 1
2
v(v − 1) is the number of possible edges in H.

• Let c denote the number of possible Hamiltonian cycles in a complete graph

C = (V,E) on v vertices. Since V = {1, . . . , v}, each Hamiltonian cycle

can be represented as a permutation of the numbers 1, . . . , v. There are

v! such permutations. However, 2v such permutations represent the same

5.2. The Algorithm HamHash 53

cycle (since it does not matter which of the v vertices is picked as the start

vertex, and if we walk around the cycle forwards or backwards). Hence

c = v!
2v

= 1
2
(v − 1)!.

• HamCycles(v) denotes the set of all Hamiltonian cycles in the complete graph

C and has c elements.

• n = ⌊log2(c)⌋ is the size of the output of Red and the input to Cyc.

• A ∈ {0, 1}v×v is the adjacency matrix that represents H. Since H is an

undirected graph (i.e. A is symmetric) and has no loops (i.e. the diagonal

of A contains all zeros), A contains some redundant information that should

be left out, since the output of HamHash should be as small as possible.

More specifically, H can be uniquely represented by the bottom left triangle

(without the diagonal) of A, so let A△ = (aij)i>j be the lower triangular

matrix of A (without the diagonal). Technically, A△ is the output of Ham-

Hash and also the output of Graph. When it does not matter or when it is

clear what is meant, however, H, A and A△ may be used interchangeably

to describe the hash value.

A△ contains exactly one entry for each possible edge in H. Therefore A△

can be rearranged to form a string of length m in a bijective way (e.g. by

concatenating the rows of the matrix). Hence we may write A△ ∈ {0, 1}m

and use it to refer to both the lower triangular matrix and the string, leaving

this trivial task to be performed where necessary. For the purposes of this

thesis it is usually easier to look at the matrix rather than the string.

5.2.3 The Function Red

The reduction function

Red : {0, 1}∗ → {0, 1}n

makes up the first part of the hash algorithm HamHash and takes the arbitrary

length message M to a bit string Red(M) of length n. The purpose of this function

is simply to reduce the size of the message, and any function that achieves this

may be chosen by the implementor of the algorithm. This section only makes

some suggestions.

It will later be shown (see Section 5.3.2) that the preimage resistance of Ham-

Hash does not depend on the properties of Red. Still it turns out that there are

better and worse choices. Although the properties of Red are not used in any

security proof, it is still a good idea to eliminate any weaknesses here if possible,

and to achieve extra properties (e.g. avalanche effect) that are desired but need

not be proven.

For example, simple truncation of M to length n (i.e. taking the first n bits

of M) would do the job. However this would mean that everything after the nth

bit has no influence on the hash value, thus not achieving a satisfactory avalanche

54 Chapter 5. A New Preimage Resistant Hash Function

effect and also making it trivial to produce collisions (by simply altering any part

of the message after the nth bit).

A much better choice is any non-cryptographic hash function with digest size

≥ n (simply truncate the digest if it is greater than n bits). This already jumbles

up the message (and the more a hash function jumbles up a message, the better)

and takes every part of it into account.

The perhaps best and recommended choice for Red is one of the custom-

designed cryptographic hash functions, such as MD5, SHA-1, SHA-256 or even

SHA-512, depending on the necessary output size. These have been shown to

achieve a very good avalanche effect and although they have been broken for col-

lisions and may soon be broken for preimages and second preimages (really, who

knows), finding these still requires a fairly high computational effort, even though

it is not impossible.

For the observant reader who may be wondering what Cyc and Graph are for

if Red is already a cryptographic hash, let us stress again that the aim here is to

produce a hash function with provable preimage resistance. This cannot be done

for any custom-designed hash function, but it is nevertheless true for HamHash.

Lastly, the rather obvious fact that Red must be efficiently computable should

be noted. Hash functions are generally desired to be efficient, and the efficiency

of HamHash also depends on that of Red. This is another reason why custom-

designed hash functions are a good choice: They can be evaluated very efficiently

on 32-bit machines.

5.2.4 The Function Cyc

Although

Cyc : {0, 1}n → HamCycles(v)

is the most trivial part of the algorithm, it is the most complicated to explain,

since great care must be taken when converting n-bit strings to Hamiltonian cycles

on v vertices. The reason for this is again that any possible weaknesses have to

be eliminated at any stage in the design. In this case we try to eliminate trivial

collisions by mapping the set of n-bit strings injectively to the set of Hamiltonian

cycles. In other words, every input is mapped to a different cycle, making collisions

impossible. To see how this can be achieved, a unique notation for each such cycle

must first be defined.

If the tuple (p0, . . . , pv−1) denotes a permutation of the numbers {1, . . . , v},
then this also describes a Hamiltonian cycle p0 . . . pv−1p0 in the graph on the

vertices {1, . . . , v}.
However, this description is not unique. The tuples (p0, p1, . . . , pv−1) and

(p1, p2, . . . , pv−1, p0) describe the same cycle, for example. Such cases can be

5.2. The Algorithm HamHash 55

ruled out by fixing the first vertex, that is, by representing a cycle as a tuple

(1, p1, . . . , pv−1) where {p1, . . . , pv−1} = {2, . . . , v}.
Still, even with the first entry fixed to be 1, there are still two descrip-

tions for each cycle. For example, (1, p1, . . . , pv−1) describes the same cycle as

(1, pv−1, pv−2, . . . , p1), only “backwards”. This can be ruled out by requiring

p1 > pv−1. This fixes the “direction” in which we “walk” around the cycle by

requiring that from vertex 1, we always go in the direction of the adjacent vertex

with the bigger number.

Hence each Hamiltonian cycle in a graph on v vertices can be described in a

unique way by a tuple (p0, p1, . . . , pv−1) where

• {p0, . . . , pv−1} = {1, . . . , v},
• p0 = 1, and

• p1 > pv−1,

which represents the cycle p0p1 . . . pv−1p0. While for p1, . . . , pv−2 all values 2, . . . , v

are allowed, pv−1 may only take values which are less than p1. This description

will be used from now on.

The set of all Hamiltonian cycles in a complete graph on v vertices can now

be described as

HamCycles(v) = {(p0, . . . , pv−1) | {p0, . . . , pv−1} = {1, . . . , v},
p0 = 1, p1 > pv−1} .

Next we can define an ordering on the set HamCycles(v). More specifically, the

elements are put in lexicographic order. This means they are first sorted by the

element p1 (since p0 is fixed). All the tuples with the same p1 are then sorted by

p2, etc. All sorting is done in ascending order.

Now we can finally return to the problem we are really trying to solve: de-

scribing an injective function

Cyc : {0, 1}n → HamCycles(v)

which maps bit strings of length n to the set HamCycles(v). Every such bit string

can be interpreted as the binary representation of a number between 0 and 2n−1.

Let d be the decimal number represented by Red(M), which is the input to the

function Cyc. All that is left to do then is to map d to the dth element in the set

HamCycles(v) (where we start counting elements in HamCycles(v) from zero), and

we are finished (with Cyc).

Recall that c was defined to be the size of HamCycles(c), and n = ⌊log2(c)⌋.
Hence n ≤ log2(c) and therefore 2n ≤ c, so {0, 1}n will be mapped to a subset of

HamCycles(v), more specifically to the first 2n elements of HamCycles(v).

We now go on to describe the algorithm that computes this mapping. It uses

56 Chapter 5. A New Preimage Resistant Hash Function

• a lookup table for the pairs of elements p1, pv−1. This is much easier than

giving an algorithm that calculates the mapping, and the table only has
1
2
(v−1)(v−2) elements, which is a size that can be handled by any computer

program. The elements tij of the table can be computed as follows.

k = 0;

for(i =3; i ≤ v; i++){
for(j = 2; j < i; j++){

tk1 = i;

tk2 = j;

k++;

}
}

The elements tk1 are used to determine the entry p1, and the tk2 determine

pv−1.

• The algorithm also uses an indexed list a of unused elements. It is initialised

as a = (2, 3, . . . , v) = (a0, . . . , av−4) with the elements p1 and pv−1 missing,

since they have already been used. Once another element is used, it is

removed from the list and all other elements “move up”, that is, if ai is

removed, then ai+1 becomes the new ai, etc.

The algorithm now works as follows.

p0 = 1;

p1 = t⌊ d

(v−3)!
⌋,1;

pv−1 = t⌊ d

(v−3)!
⌋,2;

d = d mod (v − 3)!;

a = (2, 3, . . . , v) without p1 and pv−1;

for(i = v − 4; i ≥ 0; i--){
pv−i−2 = a⌊ d

i!
⌋;

remove pv−i−2 from a;

d = d mod i!;

}

5.2.5 The Function Graph

The function

Graph : HamCycles(v) → {0, 1}m

finally takes the Hamiltonian cycle p = (p0, . . . , pv−1) computed by Cyc and con-

structs the graph H from it.

The algorithm starts by initialising the adjacency matrix A. Then the edges in

the Hamiltonian cycle p must of course be added to A. Next more random edges

5.2. The Algorithm HamHash 57

are added. The subtlety about this part is the decision as to how many edges to

add. Since each output graph should be equally likely, the number e of total edges

is picked randomly according to the binomial distribution, that is, such that

Probability(e) =

(

e

m

)

2m
.

Here it is also important to rule out trivial cases. Recall that the security of the

hash will rely on the fact that it is hard to find a Hamiltonian cycle in a graph.

Now if the graph has too few or too many edges, it becomes rather easy to find

a Hamiltonian cycle. For example, if e was picked smaller than v, no additional

edges would be added and the Hamiltonian cycle would be evident immediately,

making the task of finding a preimage trivial (for more explanation on preimages,

see Section 5.3.2). Hence e is picked from the set {f, . . . ,m−f} where 0 ≤ f ≤ m
2

can be picked according to how many cases one wants to eliminate. This “cuts

off” the ends of the binomial distribution, ruling out the trivial cases.

f m − f m

Having said all of that, Graph can now be described as follows:

1. Initialise A = (aij)i,j=1,...,v.

aij =

{

0 for i 6= j

1 for i = j

2. Add the edges of p = (p0, . . . , pv−1) to A.

{

apipi+1
= api+1pi

= 1 for i = 0, . . . , v − 2

apv−1p0 = ap0pv−1 = 1

58 Chapter 5. A New Preimage Resistant Hash Function

3. Pick the number of edges. Pick e ∈ {f, . . . ,m− f} randomly according

to the binomial distribution.

4. Generate uniformly random edges and add them to A until H has

e edges.

count = v;

while(count < e){
generate two random numbers r1, r2 ∈ {1, . . . , v};
if(ar1r2 == 0){

add edge r1r2 : ar1r2 = ar2r1 = 1;

count++;

}
}

5. Output. HamHash(M) = A△

Note that here A is initialised with ones on the diagonal. The reason for

this is that step 4 checks whether it is legal to add an edge by looking at the

corresponding entry in A. Since an edge should not be added or counted when

r1 = r2, the diagonal entries cannot be 0. This does not matter later on because

the diagonal is not part of the output anyway.

Note also the reason for working with the entire adjacency matrix when only

the lower triangle is the output. This is also done to simplify checking if an edge

is already present. It is easier to check the entry ar1r2 than to first work out which

of r1 and r2 is smaller or whether they are equal to make sure we stay in the

bottom triangle of A.

5.2.6 The Algorithm HamHash

Putting Red, Cyc and Graph together to form the algorithm HamHash now remains

only a formality. To see how the components fit together, examine this summary:

Red :

{

{0, 1}∗ → {0, 1}n

M 7→ Red(M)

Cyc :

{

{0, 1}n → HamCycles(v)

Red(M) 7→ (p0, . . . , pv−1)

Graph :

{

HamCycles(v) → {0, 1}m

(p0, . . . , pv−1) 7→ A△

Then HamHash is defined as:

HamHash :

{

{0, 1}∗ → {0, 1}m

M 7→ Graph(Cyc(Red(M)))

5.2. The Algorithm HamHash 59

5.2.7 An Example

To see HamHash in action, we now consider a toy example for

• v = 8,

• m =
(

v

2

)

=
(

8
2

)

= 28,

• c = 1
2
(v − 1)! = 1

2
· 7! = 2520, and

• n = ⌊log2(c)⌋ = ⌊log2(2520)⌋ = 11.

Now suppose the message is M = 101010101010 and for simplicity, Red is

truncation to n = 11 bits. Then Red(M) = 10101010102, which represents the

decimal number d = 210 + 28 + 26 + 24 + 22 + 20 = 1365.

Cyc then computes the 1365th cycle Cyc(10101010101) = (1, 7, 4, 8, 5, 6, 2, 3),

which represents the cycle 174856231.

Suppose e = 12 is picked randomly (a reasonable choice according to the

binomial distribution), and the four random edges to be added are picked (3,5),

(4,5), (1,4) and (7,8).

This gives the graph

b

b

b

b

b

b

b

b

1

2

3

4

5

6

7

8

which is represented by the matrix

A =

1 0 1 1 0 0 1 0

0 1 1 0 0 1 0 0

1 1 1 0 1 0 0 0

1 0 0 1 1 0 1 1

0 0 1 1 1 1 0 1

0 1 0 0 1 1 0 0

1 0 0 1 0 0 1 1

0 0 0 1 1 0 1 1

.

60 Chapter 5. A New Preimage Resistant Hash Function

So

HamHash(10101010101) = A△ =

0

1 1

1 0 0

0 0 1 1

0 1 0 0 1

1 0 0 1 0 0

0 0 0 1 1 0 1

or HamHash(10101010101) = 0111000011010011001000001101.

5.3 Properties of HamHash

More important than the functionality of HamHash are its properties. This section

examines a range of different attributes of the new hash and, most importantly,

presents the main theorem on its preimage resistance.

5.3.1 Non-Determinism and Verification

The possibly most exotic property of HamHash as a hash function is its non-

determinism. Each time the hash is applied to the same message, its outcome

may be different; in fact, it is very likely to be different. This means that a hash

cannot be verified (as belonging to a given message) by simply recalculating it,

as is usually done. To see how a non-deterministic hash can still be useful, some

new definitions are required. New definitions for (second) preimage resistance and

collision resistance are also needed.

Notation 5.3.1

Let HamHash(M) denote the output of applying the algorithm HamHash to the

message M once. There are many possible values of HamHash(M).

Let HamHashes(M) denote the set of all possible outputs of applying the algorithm

HamHash to the message M .

Note that HamHash(M) ∈ HamHashes(M) for all M ∈ {0, 1}∗, and also that

|HamHashes(M)| ≈ 2m−v for large v. This will be justified more rigorously in

Section 5.3.6.

HamHashes(M) and HamHashes(N) are not disjoint for any two messages

M,N . For example, the complete graph is a valid hash of all messages (provided

f is set to zero).

With the help of this notation we can now explain how to verify that a given

hash H belongs to a certain message M . Recall that in conventional hashing, one

would simply have to check that HamHash(M) = H. This cannot be done here,

since it is highly unlikely that they will be the same, even if H is a valid hash of

5.3. Properties of HamHash 61

M . Instead, it must be checked that the Hamiltonian cycle which “belongs to”

M is in the graph H. The function HamCheck achieves this.

HamCheck(M,H) =

{

1 (yes) if H ∈ HamHashes(M)

0 (no) otherwise

So HamCheck(M,H) = 1 if and only if the cycle Cyc(Red(M)) is in the graph

H. This can be verified quickly provided Red and Cyc are efficiently computable,

since one then only has to check for ones in v entries of the adjacency matrix.

HamHash(M,H) = 1 is equivalent to h(M) = H for a conventional hash h,

which now allows defining (second) preimage resistance and collision resistance in

a way that looks almost identical to the conventional definitions from Section 1.2.

Definition 5.3.2 (preimage resistance)

A non-deterministic hash function HamHash is called preimage resistant (or

one-way) if given a hash value H it is hard to find a message M such that

HamCheck(M,H) = 1.

Definition 5.3.3 (second preimage resistance)

A non-deterministic hash function HamHash is called second preimage resis-

tant if given a message M1 it is hard to find another message M2 such that

HamCheck(M2, H) = 1 ∀ H ∈ HamHashes(M1).

Definition 5.3.4 (collision resistance)

A non-deterministic hash function HamHash is called collision resistant if it is

hard to find two messages M1 and M2 such that

HamCheck(M1, H2) = 1 ∀ H2 ∈ HamHashes(M2)

and HamCheck(M2, H1) = 1 ∀ H1 ∈ HamHashes(M1).

5.3.2 Preimage Resistance of HamHash

The most interesting result is that HamHash is preimage resistant, regardless of

the properties of Red.

Theorem 5.3.5 (preimage resistance of HamHash)

Finding a preimage of HamHash is at least as hard as solving HamCycle(v) and

therefore NP-complete.

62 Chapter 5. A New Preimage Resistant Hash Function

The proof of this is a simple reduction proof. If we want to show that finding a

preimage is at least as hard as solving HamCycle(v), that is, solving HamCycle(v)

is at most as hard as finding a preimage, then we must show that if a preimage can

be found, HamCycle(v) can also be solved. It must also be shown that HamCycle(v)

can be solved in polynomial time if a preimage can be found in polynomial time.

Proof. Suppose there exists a polynomial time algorithm A which on input H

produces a preimage, that is, a message M such that HamCheck(M,H) = 1. By

definition of HamCheck that means that H ∈ HamHashes(M) and therefore that

H has the Hamiltonian cycle that corresponds to M , which is Cyc(Red(M)).

So we can define an algorithm A′, which on input H outputs Cyc(Red(A(H)))

= Cyc(Red(M)). A′ finds a Hamiltonian cycle in a given graph H and thus

solves HamCycle(v). Since A is a polynomial time algorithm and Red and Cyc are

polynomial time computable (otherwise HamHash would not be), A′ is also a

polynomial time algorithm.

It is clear that finding a preimage of HamHash is in NP since the correctness

of the solution can easily be checked by computing HamCheck(M,H). Therefore

finding a preimage of HamHash is an NP-complete problem. 2

This means that HamHash is a PRHF.

5.3.3 Second Preimage Resistance of HamHash

Another important result, even though less exciting, is the fact that second preim-

age resistance of HamHash and second preimage resistance of Red are equivalent.

Theorem 5.3.6 (second preimage resistance of HamHash)

HamHash is second preimage resistant if and only if Red is second preimage resis-

tant.

Proof. Suppose HamHash is second preimage resistant. Then by definition given

a message M1 it is hard to find a message M2 such that HamCheck(M2, H) = 1

for all H ∈ HamHashes(M1). Now

HamCheck(M2, H) = 1 ∀ H ∈ HamHashes(M1)

⇔ H ∈ HamHashes(M2) ∀ H ∈ HamHashes(M1)

⇔ HamHashes(M1) = HamHashes(M2)

⇔ Cyc(Red(M1)) = Cyc(Red(M2))

⇔ Red(M1) = Red(M2).

Hence given a message M1 it is hard to find a message M2 such that Red(M1) =

Red(M2) and Red is second preimage resistant (as a conventional deterministic

hash function).

Conversely, suppose Red is second preimage resistant. Then given M1 it is

hard to find an M2 such that Red(M1) = Red(M2). As above, this is equivalent

5.3. Properties of HamHash 63

to: Given M1 it is hard to find an M2 such that HamCheck(M2, H) = 1 for all

H ∈ HamHashes(M1). So HamHash is second preimage resistant. 2

5.3.4 Collision Resistance of HamHash

Collision resistance behaves the same as second preimage resistance. It is equiva-

lent in HamHash and Red.

Theorem 5.3.7 (collision resistance of HamHash)

HamHash is collision resistant if and only if Red is collision resistant.

Proof. Suppose HamHash is collision resistant. Then by definition it is hard to

find two messages M1,M2 such that

HamCheck(M1, H2) = 1 ∀ H2 ∈ HamHashes(M2)

and HamCheck(M2, H1) = 1 ∀ H1 ∈ HamHashes(M1)

⇔ HamHashes(M1) = HamHashes(M2)

⇔ Cyc(Red(M1)) = Cyc(Red(M2))

⇔ Red(M1) = Red(M2).

Hence it is hard to find M1,M2 such that Red(M1) = Red(M2) and Red is collision

resistant (as a deterministic hash).

Conversely, suppose Red is collision resistant. Then it is hard to find M1,M2

such that Red(M1) = Red(M2). As above, it is then hard to find M1,M2 such

that HamCheck(M1, H2) = 1 ∀ H2 ∈ HamHashes(M2) and HamCheck(M2, H1) =

1 ∀ H1 ∈ HamHashes(M1), and so HamHash is collision resistant. 2

More significant than the resistance to collisions produced deliberately (by an

attacker, say) might in this case be the question of collisions occurring “acciden-

tally”. Even non-cryptographic hash functions are no good if two different inputs

often hash to the same value, and the same is true for cryptographic hashes. For

HamHash, it should be very unlikely that two unequal messages are verified by

the same hash value. This, of course, also depends on the quality of the function

chosen for Red, for any collision in the reduction function produces a collision in

HamHash, as seen above. Still, the quality of Red shall not concern us here, since

it depends on the choice of the function and good choices are available. Cyc can

never produce collisions, since it is bijective. Hence the interesting question to

ask is: Given two distinct Hamiltonian cycles p and q, how likely is it that a valid

“hash” of p (meaning Graph(p)) also verifies q? In other words, how big is the

probability that Graph(p) also contains the cycle q?

To answer this question, some simplifying assumptions must be made (as in

many of the following sections, where it will be explained why these are rea-

sonable). Assume that an output H of Graph has approximately half edges and

64 Chapter 5. A New Preimage Resistant Hash Function

half non-edges (see Section 5.3.7), and that each edge is present with probabil-

ity 1
2

(see Section 5.3.6). Then the probability that a given cycle q is present

in a graph H = Graph(p) is
(

1
2

)v
, since q fixes v edges that must be present.

If, for example, v = 128 (again a reasonable choice, see Section 5.3.9), then
(

1
2

)v
= 2−128 ≈ 2.9 · 10−39, which is reasonably small. Hence the unlikeliness of

(accidental) hash collisions can be considered satisfactory.

5.3.5 Avalanche Effect in HamHash

There are more properties of hash functions that are desired but need not be

proven. A significant one is the avalanche effect, which is the property that adja-

cent bit strings have completely different hashes. Recall from Section 1.2 that this

is more precisely defined as: When an input to a hash function is changed slightly

(e.g. one bit is flipped), the output changes significantly (i.e. approximately half

the output bits flip). If a hash function does not exhibit the avalanche effect to

a significant degree, a cryptanalyst may be able to make predictions about the

input, given only the output, which may be sufficient to partially or completely

break the algorithm. Thus, “constructing a cipher or hash to exhibit a substantial

avalanche effect is one of the primary design objectives” [2].

Experiments conducted with the help of the implementation (see Section 5.5)

suggest that HamHash achieves a good avalanche effect. Even when only one letter

of the input changes, hash values look completely different. For good readability,

we have chosen v = 8.

HamHash("abcdefg") = 1110111010100001011011011111

HamHash("abcdefh") = 0100001011110010111100111110

HamHash("abcdefi") = 1100110001111010100000100101

However, this requires some further theoretical investigation. The avalanche

effect is trivially present for HamHash if Red achieves a good avalanche effect,

but let us examine what happens without this assumption, that is, how does the

output H = HamHash(M) change if Red(M) only changes slightly? The random

edges produced in Graph (and those are all edges in H except for the ones resulting

from the cycle) change completely every time the hash is applied, and therefore

also if the hash is applied to a slightly changed Red(M). In fact, the presence of

each edge (and therefore the value of each bit in H) changes with probability 1
2
,

since each edge occurs with equal probability and approximately half of the edges

are present. That only leaves the edges in the cycle to worry about.

How does Cyc(Red(M)) change if Red(M) changes by one bit? This may not

always change approximately half of the edges in Cyc(Red(M)). Especially if

one of the least significant bits in Red(M) is changed, that will only change the

number d = Red(M) by a small power of 2, resulting in a tuple that has many

of the same entries. So this may not produce a satisfactory avalanche effect for

5.3. Properties of HamHash 65

the function Cyc. Note that this only concerns some cases, though, and only the

v edges resulting from the cycle, which is a very small percentage of the total

number of edges e ≈ m
2

for large v (e.g. v
e
≈ 3.15% for v = 128). Although

this should not concern us too much, it might be a good argument for choosing a

reduction function which already achieves a good avalanche effect.

5.3.6 Surjectivity of HamHash

Another interesting property to examine is the surjectivity of HamHash. This

concerns questions like “Is every graph a possible output of HamHash?” and “Are

all outputs equally likely?”

The immediate response to the first question is “no”. HamHash is not sur-

jective. It is obvious that any output graph must contain a Hamiltonian cycle.

Therefore all graphs which do not contain a Hamiltonian cycle, and in particular

those with less than v edges, are not possible outputs of HamHash. However, it is

worth examining how many such graphs exist.

It is hard to find a formula for the number of graphs on v vertices without a

Hamiltonian cycle. But the use of Erdös’ random graph model provides a helpful

result. Bollobás [6] proves that an element of G(v, 1
2
) has a Hamiltonian cycle

with probability tending to one as v → ∞. Hence for large v, most graphs have

Hamiltonian cycles, leaving very few graphs to be impossible outputs of HamHash.

Further, if the parameter f in Graph is set to zero, any graph that contains at

least one Hamiltonian cycle is a possible output of HamHash, yielding not perfect

but quite good surjectivity. If f ≫ 0 is chosen, this will restrict the surjectivity

by making certain outputs impossible.

It is also an important objective in hash function design that all outputs are

equally likely. Otherwise an attacker could again make predictions about the

output which may sometimes help in breaking the hash. Consider only the possible

outputs of HamHash and examine if they all occur with equal probability. It is

easy to see that this is at least roughly the case, if it is assumed that Red is a

good hash function, that is, that all n-bit strings are possible and equally likely

outputs of Red. When converting Red(M) to a cycle, not all cycles are possible,

since n is chosen n = ⌊log2(c)⌋. In all cases that leads to 2n < c, which means that

the last c − 2n cycles cannot occur. Hence some of the edges resulting from the

cycle might occur with greater probability than others. But again, as mentioned

before, this is only a small percentage of the total edges in the graph. The random

edges added in Cyc naturally all occur with equal probability, as they are chosen

uniformly at random. Hence every possible output graph of HamHash has at least

roughly equal probability.

66 Chapter 5. A New Preimage Resistant Hash Function

5.3.7 Randomness of HamHash

It is also important that a hash function behaves like a random function in that it

should be impossible to predict any output bits given a particular input without

applying the function.

Without actually applying any statistical tests to the output of HamHash, it is

probably valid to say that the output is “random-looking”. The number of edges

is on average about 1
2
, leading to approximately half zeros and half ones in the

output. Each edge is equally likely, and therefore each bit is one with probability
1
2

and zero with probability 1
2
.

Test results obtained with the help of the implementation of HamHash (see

Section 5.5, v = 8) illustrate this property nicely.

HamHash("") = 1011110001110001001000011100 Ham-

Hash("0") = 0111001010101111100000110101 Ham-

Hash("maike") = 0100110100100010000110100100

HamHash("Maike") = 0010011110101011010101011010

It is also fairly clear that given an input it is impossible to predict any output

bits without actually applying at least parts of the HamHash algorithm, if it

is impossible to predict the random numbers. This phenomenon touches on a

big problem in cryptography - how to generate cryptographically secure random

numbers, that is, in an unpredictable way. This will be discussed in more detail

in Section 5.6.3.

Note also that the application of Red and Cyc alone allow the prediction of

exactly v output bits, namely the ones in the cycle corresponding to the message.

5.3.8 Efficiency of HamHash

Hash functions are usually building blocks of complex cryptographic protocols,

and such protocols may require many evaluations of a hash function. They are

therefore required to be efficiently computable. This is often a disadvantage of

provably secure hash functions as compared to custom-designed ones. Provably

secure hash functions often involve operations that are very “expensive”. Ham-

Hash cannot be as efficient as the custom-designed algorithms, which are designed

to be fast on 32-bit machines and only involve logical bit operations, but it is

rather efficient for a provably secure hash function. Consider the three different

parts that make up the algorithm.

The efficiency of Red of course depends on the choice of the function. Since

this is allowed to be a custom-designed hash function, very efficient choices are

available.

Cyc is in O(v), so it has linear complexity, which is very efficient.

5.3. Properties of HamHash 67

The core part is the efficiency of Graph. This depends solely on how fast

random number generation is. On average, about 2(e
2
− v) ≈ e random numbers

between 1 and v must be generated. For v = 128, we need about 4000 random

numbers or 28000 random bits.

There are very efficient random number generators, but not all are suitable for

uses in cryptography (for a discussion of this see Section 5.6.3). HamHash requires

a cryptographically secure random number generator. The best such generators

are hardware random number generators, which obtain entropy from physical

processes. The fastest currently available physical random number generators are

able to produce about 32 random Mbits per second [25]. HamHash needs less than

30 kbits, which can be produced in less than 1
1000

of a second. Hence Graph is very

efficient, and so all of HamHash is efficient.

5.3.9 Bits of Security of HamHash

One of the most important questions left to answer is how big v must be chosen

to achieve reasonable security. To answer it, we must examine the number of

Hamiltonian cycles present in an average output of HamHash.

As explained before, all graphs are approximately equally likely outputs of

HamHash and therefore G(v, 1
2
) is a good model to use. Greenhill [22] proves that

the expected number of Hamiltonian cycles in a random graph H ∈ G(v, 1
2
) is

v!
2v

(

1
2

)v
. Now suppose an attacker were to launch a brute force attack to find a

preimage to a given hash H. Since there are 2n possible cycles that a message M

can be mapped to, and v!
2v

(

1
2

)v
of these are present in HamHash(M), the attacker

would have to try 2n

v!
2v

(1
2)

v messages on average in order to find a valid preimage.

Now
2n

v!
2v

(1
2)

v = 2n

(v−1)!2−(v+1) = 2n+v+1

(v−1)!
= 2⌊log2(c)⌋·2v+1

(v−1)!

≤ 2log2(c)·2v+1

(v−1)!
= c·2v+1

(v−1)!
=

1
2
(v−1)!·2v+1

(v−1)!
= 2v

so v vertices give at least v bits of security, a rather nice result.

Since HamHash is not collision resistant and therefore not open to birthday

attacks, at least 128 bits of security are desired (see Section 1.3.1). This gives the

following values for a secure implementation of HamHash.

v = 128

m = 8128

c ≈ 1.5 · 10213

n = 708

This gives a hash value of approximately 1 kilobyte, which is larger than we are

used to, but should not be a problem with the memory capacities available these

days.

68 Chapter 5. A New Preimage Resistant Hash Function

5.4 Applications of HamHash

A new type of hash function is not any good if it cannot be used for anything. Gen-

erally, preimage resistance suffices for authentication purposes. Although more

research into the applications of PRHFs is necessary, this section gives at least

two possible applications for which HamHash could be used.

5.4.1 Password Storage

Password storage as explained in Section 1.4.2 is a great way to use HamHash.

Recall that the hash values of the passwords are stored in a password file, rather

than the passwords themselves. If the file is compromised by an attacker, he/she

still does not have access to the passwords since HamHash is preimage resistant.

In this scenario an attacker would be interested in gaining access to an account,

therefore he/she would not be interested in finding second preimages. One preim-

age would be enough. He/she would also not be interested in finding collisions,

because he/she could not do anything with them.

Also, it does not matter that the hash is non-deterministic. It can still be

verified that the stored hash belongs to the entered password, which is enough to

authenticate a user.

5.4.2 Game Solution

Suppose I know the solution to some game. My friend plays the same game and

she wants to check whether her solution is correct, but I do not want to give her my

solution. So I give her the hash of my solution. That way, she can check her own

solution, but she cannot obtain my solution from it because she cannot calculate

a preimage. Again, it does not matter that the hash is non-deterministic, since

the hash still verifies a correct solution. Second preimage resistance or collision

resistance are not required.

5.5 Implementation of HamHash

This section presents a “proof of concept” implementation of the HamHash algo-

rithm. This is not one that should be used in practice, it is simply to show how

the algorithm works on a computer. The Java code can be found in the appendix

and on the CD-ROM provided with this thesis.

The algorithm uses a truncation of SHA-1 as the reduction function, since

SHA-1 is already implemented in Java. Since SHA-1 has a 160-bit output, at

most 41 bits of security can be achieved. The parameters v and f may be chosen

by the user.

The program HamHash takes two arguments, which allow the user to specify v

and f (in this order). Any further arguments are ignored. If only one argument

is given, f is set to zero. If no arguments are given, the defaults v = 41 and f = 0

are used.

5.5. Implementation of HamHash 69

The program provides an interactive menu and allows a user to compute and

verify hashes. Hash values are shown as a lower triangular matrix and also con-

catenated as a string. The menu is self explanatory and the use of the program

should be fully understood by looking at the following sample execution.

>HamHash 20

Welcome!

You have chosen 20 bits of security.

v = 20

m = 190

n = 55

f = 0

Which task would you like to perform? Type

0 to exit

1 to compute a hash

2 to verify a hash

1

Enter a message:

One doesn’t discover new lands without consenting to lose sight

of the shore for a very long time. André Gide

The hash is:

1

00

111

1001

01111

001011

1101110

01001111

110011010

0001001010

11001110011

101000000000

1001000100001

01100110010111

010101100010100

1100000010010001

00010001000001010

70 Chapter 5. A New Preimage Resistant Hash Function

011010110111100011

1011101001101101000

The hash string is:

10011110010111100101111011100100111111001101000010010101100111001

11010000000001001000100001011001100101110101011000101001100000010

010001000100010000010100110101101111000111011101001101101000

Which task would you like to perform? Type

0 to exit

1 to compute a hash

2 to verify a hash

2

Enter a message:

One doesn’t discover new lands without consenting to lose sight

of the shore for a very long time. André Gide

Enter a hash string:

10011110010111100101111011100100111111001101000010010101100111001

11010000000001001000100001011001100101110101011000101001100000010

010001000100010000010100110101101111000111011101001101101000

VALID HASH

Which task would you like to perform? Type

0 to exit

1 to compute a hash

2 to verify a hash

2

Enter a message:

One doesn’t discover new lands without consenting to lose sight

of the shore for a very long time. André Gide

Enter a hash string:

00011110010111100101111011100100111111001101000010010101100111001

11010000000001001000100001011001100101110101011000101001100000010

010001000100010000010100110101101111000111011101001101101000

VALID HASH

Which task would you like to perform? Type

0 to exit

1 to compute a hash

2 to verify a hash

5.6. Problems and Further Research 71

2

Enter a message:

One doesn’t discover new lands without consenting to lose sight

of the shore for a very long time. André Gide

Enter a hash string:

00000000010111100101111011100100111111001101000010010101100111001

11010000000001001000100001011001100101110101011000101001100000010

010001000100010000010100110101101111000111011101001101101000

INVALID HASH

Which task would you like to perform? Type

0 to exit

1 to compute a hash

2 to verify a hash

0

Good bye!

This implementation has not been optimised to achieve speed. Rather, it has

been made to have a very similar structure to the description of the algorithm in

this chapter.

Also note that the implementation uses the standard method of random num-

ber generation implemented in Java. These random numbers are not really suit-

able for cryptographic purposes.

At this point, we should also comment on the choice of f . Although the

implementation allows a user to set f , we have found that it is not really necessary.

The binomial distribution has such a small probability on both ends that very

small or very large values for e do not seem to occur in practice. It really depends

on the level of concern of the person running the program.

5.6 Problems and Further Research

As with any new design, there are still unsolved problems in HamHash that require

further research. This thesis also gives the direction for several new areas of

research which are not directly related to current problems in HamHash but rather

extensions of this work. Many of them I would be very interested to explore myself.

5.6.1 Digest Size

The large output size is what many might criticise first about HamHash. We have

shown that v = 128, which will achieve the security necessary today, produces

a hash value of about 1 kilobyte, which is much larger than that of the hash

functions we are using (e.g. MD5: 128 bits, SHA-1: 160 bits). However, many

provably secure hash functions have rather large hash values (recall that the hash

72 Chapter 5. A New Preimage Resistant Hash Function

of SubSum is at least 1352 bits) and this is becoming less of a problem as memory

becomes cheaper and more available.

Often large hash values are simply truncated. Note that HamHash does not

allow this, as it would make it impossible to verify a hash. The entire Hamiltonian

cycle has to be present in the output graph.

5.6.2 Reduction Function

We suggested the use of a custom-designed hash function as the reduction function

Red. However it was shown that the output of this function must have at least

n = 708 bits for v = 128. As of today, no custom-designed hash function that

produces such a big output exists. To our knowledge, the largest are SHA-512 and

WHIRLPOOL with a digest size of 512 bits. There are rumours of SHA-1024 but

it does not seem to actually exist. Still, it should be possible to further extend

the SHA-family to produce an output larger than 708 bits (probably 1024 bits),

as it has been extended before from 160 to 256 to 512 bits. This would definitely

be worth some further investigation.

5.6.3 Cryptographically Secure Random Number Generation

Graph requires the generation of random numbers, and this is anything but a

trivial process. While a proper discussion of random number generation would fill

books and clearly be beyond the scope of this document, we just briefly outline

the problem and make a few comments.

Random numbers can be generated in two different ways: either by compu-

tational methods (pseudo-random number generators) or from physical processes

(hardware random number generators). Sometimes these methods are combined

to form hybrid models. Sequences of random numbers must always pass certain

statistical tests which indicate that they are indistinguishable from ‘true’ random

numbers.

However, good statistical properties are not enough for the purposes of Ham-

Hash. The random numbers must not only be “random-looking”, they must also

withstand serious attack. For example, if an attacker could predict which random

edges were added, they could easily subtract them from an output graph to obtain

the Hamiltonian cycle. Pseudo-random generators that fulfill such properties are

called cryptographically secure pseudo-random number generators and must more

specifically satisfy the following two requirements [12].

• Firstly, they must satisfy the “next bit test”: Given the first k bits of a

sequence, there is no polynomial-time algorithm that can predict the (k+1)th

bit with probability bigger than 1
2
.

• Secondly, they must withstand “state compromise extensions”: Even if part

or all of its state has been compromised, it must be impossible to reconstruct

the stream of random numbers prior to the revelation.

5.6. Problems and Further Research 73

Such a cryptographically secure pseudo-random number generator would suffice

for use in HamHash, but finding one is a very difficult problem. Similar to the

situation in hash functions design, constructions exist which are assumed to have

these properties, but it is hard to prove them.

The preferred method would be a physical random number generator. “There

is general agreement that, if there are such things as ‘true’ random numbers, they

are most likely to be found by looking at physical processes which are, as far as we

know, unpredictable” [51]. Many cryptographically secure pseudo-random number

generators use entropy obtained from a physical source (e.g. mouse movement or

keyboard input). However, this method also has its problems. It is usually slower

than purely computational pseudo-random number generators, and unexpected

correlations have been found in several supposedly independent physical processes.

Several pseudo-random number generators have been standardised for crypto-

graphic purposes [50]. The Blum Blum Shub Algorithm [29] is also a very promis-

ing design. It has an unusually strong security proof, which relates the quality

of the generator to to computational difficulty of integer factorisation. Hardware

random number generators that are efficient and claim to be cryptographically

secure are available [25]. How good they really are remains an open question. It

only remains to stress that cryptographically secure random number generation is

a huge problem and that the method used in HamHash must be selected carefully.

5.6.4 Hardness of HamCycle(v)

The security of HamHash relies fully on the hardness of the Hamiltonian cycle

problem. However, as with any NP-complete problem, HamCycle(v) may not be

hard in all cases, since NP-completeness only proves the hardness of the general

case, and not of every instance of a problem. In fact, it can easily be seen that

finding a Hamiltonian cycle is easy if there are very few or very many edges

in a graph. Manber [38] gives an efficient algorithm for finding a Hamiltonian

cycle in a graph where all vertices have degree ≥ v
2
. Liu [37] proves that the

problem is solvable in polynomial time for instances where the graph has no

vertex exceeding degree 2 or is a line graph. Remember that these first two

easy cases (i.e. too few and too many vertices) may be ruled out by setting the

parameter f in Graph appropriately (by the pigeonhole-principle, there must be

at least one vertex with degree greater than 2 if f > v, and there must be at

least one vertex with degree less than v
2

if m − f < v2

4
), and these results should

be considered when selecting f . In addition, the results stated in Section 5.1.1

also show that HamCycle(v) remains NP-complete in many special cases. Thus

one can be very confident that the problem is hard in most cases, which may be

considered satisfactory for many cryptographic applications. However, no exact

results on the proportion of polynomial-time solvable cases seem to be available

at this time.

74 Chapter 5. A New Preimage Resistant Hash Function

5.6.5 Approximation Algorithms

Ways to deal with NP-complete problems, and especially approximation algo-

rithms, are a large area of research in the theory of NP-completeness. For the

use of NP-complete problems in cryptography, inapproximability results are even

more interesting. This opens up a new area of research (see [1], for example), in

which much work is yet to be done.

An approximation algorithm for the Hamiltonian cycle problem would attempt

to approximate a Hamiltonian cycle by finding a large cycle in a graph. However,

no approximation algorithm seems to exist for the Hamiltonian cycle problem,

and even if it did, it would not defeat the security of HamHash. A large cycle is

not sufficient to produce a preimage. A full Hamiltonian cycle has to be found

to defeat preimage resistance. Zuckerman’s proof [69] that the Hamiltonian cy-

cle problem is “absurdly hard to approximate” (more concretely, that there is

no polynomial-time algorithm that can achieve a usable approximation of Ham-

Cycle) gives even more certainty that approximation algorithms cannot defeat the

security of HamHash.

There are good approximation algorithms for the Hamiltonian path problem,

but again they do not help in breaking HamHash, because a true Hamiltonian

cycle is needed.

5.6.6 Hash Functions Based on NP-Complete Graph Problems

An interesting area for further research might be the design of more hash func-

tions based on NP-complete graph problems such as vertex cover, dominating set,

independent set, monochromatic triangle, clique, or any of the many partition,

colorability or subgraph problems. Some ideas from this work could prove useful

in that.

5.6.7 Applications of Non-Deterministic Hashes and PRHF

Another area where much work is left to be done is determining in which ap-

plications the new designs could be used. Although it has been explained that

non-deterministic PRHFs are sufficient for authentication purposes, it is worth

investigating where else they might be used. This can be done separately for

non-deterministic hash functions and PRHFs.

5.6.8 Stronger Non-Deterministic Hash Functions

If it turns out that non-deterministic hash functions have applications, or that

they even have advantages over deterministic hash functions, research into non-

deterministic hashes with stronger security properties might be worthwhile. For

example, are there non-deterministic hash functions which are second preimage

resistant, or maybe even collision resistant?

5.7. Conclusion 75

5.6.9 Another Definition of “Hard”

There is another fairly common definition of hardness, which is often referred to

as computational infeasibility.

Definition 5.6.1 (computationally infeasible)

A problem is considered computationally infeasible if there exists no polyno-

mial time algorithm A that can solve the problem with non-negligible probability.

Here a probability p is considered non-negligible if p > 1
q(n)

where q is a

polynomial and n is the size of the input to the algorithm A.

This definition of hardness is even better than NP-completeness because it bounds

the proportion of polynomial-time solvable problems (for a fixed input size). Un-

fortunately, it is also much harder to handle than the well studied class of NP-

complete problems. A very interesting question is whether HamHash or other

hash functions are still secure under the more strict requirement of computa-

tional infeasibility for hard operations. Studying the general connections between

computationally infeasible problems and NP-complete problems might also be

worthwhile.

5.7 Conclusion

This chapter has introduced a new type of hash function and a concrete design

of its kind. It has shown that HamHash as a non-deterministic hash function

is provably preimage resistant and therefore a PRHF. However, it is not second

preimage resistant or collision resistant unless we have a reduction function with

these properties, which would make HamHash pointless. Still, its security is suffi-

cient for some applications. It is an interesting design and if more research is done

to overcome its problems, it may very well be of practical importance, forming

the first design of its kind.

Conclusion

Cryptographic hash functions are an interesting and challenging area of research.

Much progress has been made, and much work is yet to be done. Provably secure

hash functions are highly desirable, but their design is very difficult.

The most practical and most widely used method in current research is relating

security properties to NP-complete problems. This is an established method of

quantifying “hardness”, and the task of proving security properties boils down to

writing reduction proofs, which is often achievable. The large number of known

NP-complete problems gives a great variety to choose from and leads to many

different possibilities of designing provably secure hash functions. Many can be

turned into hash functions in very natural ways.

Still, there are many problems with this approach, and for every new de-

sign, these have to be investigated and solved individually. Provably secure hash

functions are usually much slower than custom-designed ones, since NP-complete

problems often involve operations that are very slow on a computer, such as ex-

ponentiation or multiplication. Although NP-completeness gives an indication of

how hard it is to solve a problem, there is always the possibility of approxima-

tion. For some problems, polynomial-time approximation algorithms may exist

that approximate the problem well enough so that they can be used for successful

attacks. It would be desirable to prove that such algorithms do not exist (this is

the aim of inapproximability theory), but that is again a very difficult task. And

even if no approximation algorithm exists, NP-completeness gives no indication

of how many trivial (or efficiently solvable) instances a problem has. Other defini-

tions of “hard” that take this problem into account (i.e. that limit the proportion

of easy problem instances) exist but are much harder to work with.

Despite some still existing difficulties, this seems to be the way to go. It is

time to stop relying on hash functions with questionable security for applications

as important as digital signatures and message authentication codes. The last

two years of cryptanalysis have clearly shown that current hash algorithms do

not provide the security we desire. I think anyone who fully understands the

implications of these developments should be willing to accept small disadvantages

like longer running time to gain provable security, and I hope that provably secure

hash functions will soon be ready to replace custom-designed ones.

77

Appendix

///

// Maike Massierer 12/12/2006 //

// c l a s s HamHash − implementation o f hashing a lgor i thm HamHash //

///

import java . i o . ∗ ;

import java . s e c u r i t y . ∗ ;

import java . math . B ig Intege r ;

import java . lang . I n t eg e r ;

import java . u t i l . ArrayList ;

import java . u t i l .Random ;

import cern . j e t . random . Binomial ;

import cern . j e t . random . eng ine . MersenneTwister ;

public class HamHash{

/////////////////////

// c l a s s v a r i a b l e s //

/////////////////////

private stat ic int v ; //number o f v e r t i c e s

private stat ic int m; //number o f p o s s i b l e edges

private stat ic int n ; // l eng t h o f Red output

private stat ic int f ; // s e cu r i t y parameter

private stat ic int [] [] t ; // lookup t a b l e

// lookup t a b l e f o r n in {0 , . . . , 4 1}

private stat ic int [] tn = {0 , 0 , 0 , 0 , 1 , 3 , 5 , 8 , 11 , 14 , 17 , 20 , 24 , 27 ,

31 , 35 , 39 , 43 , 47 , 51 , 55 , 60 , 64 , 68 , 73 , 78 ,

82 , 87 , 92 , 96 , 101 , 106 , 111 , 116 , 121 , 126 ,

131 , 137 , 142 , 147 , 152 , 158} ;

// lookup t a b l e to conver t a n i b b l e to a hex char

stat ic char [] hexChar = { ’ 0 ’ , ’ 1 ’ , ’ 2 ’ , ’ 3 ’ ,

’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ ,

’ 8 ’ , ’ 9 ’ , ’ a ’ , ’ b ’ ,

’ c ’ , ’ d ’ , ’ e ’ , ’ f ’ } ;

////////////////////

// pub l i c methods //

////////////////////

//computeHamHash − computes hash va lue o f msg

public stat ic int [] [] computeHamHash(St r ing msg){

return Graph(Cyc(Red(msg))) ;

}

//hamCheck − checks i f hash i s a v a l i d hash va lue o f msg

//0 = inva l i d , 1 = va l i d

private stat ic int hamCheck(St r ing msg , S t r ing hash){

// i n v a l i d i f s t r i n g has wrong s i z e

i f (hash . l ength () != m){

return 0 ;

}

79

80 Appendix

// i n v a l i d i f not a l l charac t e r s are 0 or 1

for (int i = 0 ; i < hash . l ength () ; i++){

i f (hash . charAt (i) != ’ 0 ’ && hash . charAt (i) != ’ 1 ’){

return 0 ;

}

}

// turn hash in to lower t r i an gu l a r matrix A

int [] [] A = new int [v] [v] ;

int k = 0 ;

for (int i = 0 ; i < v ; i++){

for (int j = 0 ; j < i ; j++){

A[i] [j] = In t eg e r . pa r s e In t (hash . sub s t r i ng (k , k+1)) ;

k++;

}

}

//compute cy c l e corresponding to mgs

int [] p = Cyc(Red(msg)) ;

// check i f a l l edges be l ong ing to the cy c l e are present in A

int r e s u l t = 1 ;

for (int i = 0 ; i < v−1; i++){

i f (p [i] > p [i +1]){

i f (A[p [i] −1] [p [i +1]−1] != 1){

r e s u l t = 0 ;

}

} else {

i f (A[p [i +1]−1][p [i]−1] != 1){

r e s u l t = 0 ;

}

}

}

i f (p [v−1] > p [0]) {

i f (A[p [v−1]−1][p [0] −1] != 1) r e s u l t = 0 ;

} else {

i f (A[p [0] −1] [p [v−1]−1] != 1) r e s u l t = 0 ;

}

return r e s u l t ;

}

/////////////////////

// p r i v a t e methods //

/////////////////////

//Red − computes SHA−1 d i g e s t o f t e x t , t runcated to l eng t h n

private stat ic St r ing Red(St r ing text){

byte [] msgDigest = new byte [1] ;

try{

MessageDigest md = MessageDigest . g e t In s tance (”SHA”) ;

msgDigest = md. d i g e s t (t ex t . getBytes ()) ;

} catch (NoSuchAlgorithmException nsae) {

System . out . p r i n t l n (”SHA−1 not a v a i l a b l e . Good bye ! ”) ;

System . e x i t (1) ;

}

// return b i t s t r i n g o f l eng t h n

return toBinaryStr ing (msgDigest) . s ub s t r i ng (0 , n) ;

Appendix 81

}

//Cyc − computes c y c l e corresponding to b inary s t r i n g bin

private stat ic int [] Cyc (S t r ing bin){

int [] p = new int [v] ; // cyc l e

p [0] = 1 ;

B ig Intege r d = new Big Intege r (bin , 2) ;

p [1] = t [(d . d i v id e (f a c t o r i a l (v−3))) . intValue ()] [0] ;

p [v−1] = t [(d . d i v id e (f a c t o r i a l (v−3))) . intValue ()] [1] ;

d = d .mod(f a c t o r i a l (v−3)) ;

// l i s t a = (2 , . . . , v) wi thout p 1 and p {v−1}

ArrayList a = new ArrayList () ;

for (int i = 2 ; i <= v ; i++){

i f (i != p [1] && i != p [v−1]){

a . add (new I n t eg e r (i)) ;

}

}

for (int i = v−4; i >= 0 ; i −−){

p [v−i −2] = In t eg e r . pa r s e In t ((a . remove

((d . d i v id e (f a c t o r i a l (i))) . intValue ())) . t oS t r i ng ()) ;

d = d .mod(f a c t o r i a l (i)) ;

}

return p ;

}

//Graph − computes graph with cy c l e p and more random edges

private stat ic int [] [] Graph (int [] p){

// i n i t i a l i s e A with 1s on diagonal , 0 s everywhere e l s e

int [] [] A = new int [v] [v] ;

for (int i = 0 ; i < v ; i++){

A[i] [i] = 1 ;

}

//add edges o f c y c l e to A

for (int i =0; i < v−1; i++){

A[p [i] −1] [p [i +1]−1] = 1 ;

A[p [i +1]−1][p [i]−1] = 1 ;

}

A[p [v−1]−1][p [0] −1] = 1 ;

A[p [0] −1] [p [v−1]−1] = 1 ;

// p ick random number e in { f , . . . ,m−f } o f edges

// according to binomia l d i s t r i b u t i o n

int e = −1;

MersenneTwister tw i s t e r = new MersenneTwister (new java . u t i l . Date ()) ;

Binomial binGenerator = new Binomial (m, 0 . 5 , tw i s t e r) ;

while (e < f | | e > m−f){

e = binGenerator . next Int () ;

}

// generate random edges and add them to A

int r1 = 0 ;

int r2 = 0 ;

int count = v ;

Random generator = new Random () ;

while (count < e){

82 Appendix

// generate two random numbers between 0 and v−1

r1 = generator . next Int (v) ;

r2 = generator . next Int (v) ;

// i f the edge r1r2 i s not there yet , add i t

i f (A[r1] [r2] == 0){

A[r1] [r2] = 1 ;

A[r2] [r1] = 1 ;

count++;

}

}

return A;

}

// se tCons tants − s e t s v , m, n , f , t

//with vv in {6 , . . . , 4 1} number o f v e r t i c e s (= b i t s o f s e c u r i t y)

private stat ic void setConstants (int vv , int f f){

v = vv ; //number o f v e r t i c e s

m = v∗(v−1)/2; //number o f p o s s i b l e edges

n = tn [v] ; // l eng t h o f Red output

f = f f ; // s e cu r i t y parameter

t = new int [(v−1)∗(v − 2) / 2] [2] ; // lookup t a b l e

int k = 0 ;

for (int i = 3 ; i < v ; i++){

for (int j = 2 ; j < i ; j++){

t [k] [0] = i ;

t [k] [1] = j ;

k++;

}

}

// output

System . out . p r i n t l n (”\nYou have chosen ” + v + ” b i t s o f s e c u r i t y . ”) ;

System . out . p r i n t l n (”v = ” + v) ;

System . out . p r i n t l n (”m = ” + m) ;

System . out . p r i n t l n (”n = ” + n) ;

System . out . p r i n t l n (” f = ” + f) ;

}

//menu

private stat ic int menu(){

int cho i c e = 0 ;

System . out . p r i n t l n (”\nWhich task would you l i k e to perform? Type”) ;

System . out . p r i n t l n (”0 to e x i t ”) ;

System . out . p r i n t l n (”1 to compute a hash”) ;

System . out . p r i n t l n (”2 to v e r i f y a hash”) ;

//open up standard input

BufferedReader br = new BufferedReader (new InputStreamReader (System . in)) ;

// read user input

try {

cho i c e = In t eg e r . pa r s e In t (br . readLine ()) ;

} catch (IOException i o e) {

System . out . p r i n t l n (”IO e r r o r t ry ing to read . Good bye ! ”) ;

System . e x i t (1) ;

} catch (NumberFormatException nfe) {

System . out . p r i n t l n (”Must ente r a number . Try again ! ”) ;

return 1 ;

Appendix 83

}

switch (cho i c e){

case 1 :

computeHash () ;

break ;

case 2 :

ver i fyHash () ;

break ;

}

return cho i c e ;

}

//computeHash − user i n t e r f a c e f o r computing a hash

private stat ic void computeHash (){

System . out . p r i n t l n (”Enter a message : ”) ;

S t r ing msg = ”” ;

//open up standard input

BufferedReader br = new BufferedReader (new InputStreamReader (System . in)) ;

// read user input

try {

msg = br . readLine () ;

} catch (IOException i o e) {

System . out . p r i n t l n (”IO e r r o r t ry ing to read . Good bye ! ”) ;

System . e x i t (1) ;

}

//compute hash

int [] [] A = computeHamHash(msg) ;

// output

printHash (A) ;

pr intHashStr ing (A) ;

}

// v e r i f y Hash − user i n t e r f a c e f o r v e r i f y i n g a hash

private stat ic void ver i fyHash (){

System . out . p r i n t l n (”Enter a message : ”) ;

S t r ing msg = ”” ;

//open up standard input

BufferedReader br = new BufferedReader (new InputStreamReader (System . in)) ;

// read user input

try {

msg = br . readLine () ;

} catch (IOException i o e) {

System . out . p r i n t l n (”IO e r r o r t ry ing to read . Good bye ! ”) ;

System . e x i t (1) ;

}

System . out . p r i n t l n (”Enter a hash s t r i n g : ”) ;

S t r ing hash = ”” ;

// read user input

try {

hash = br . readLine () ;

} catch (IOException i o e) {

System . out . p r i n t l n (”IO e r r o r t ry ing to read . Good bye ! ”) ;

84 Appendix

System . e x i t (1) ;

}

//hamCheck

int r e s u l t = hamCheck(msg , hash) ;

// output

i f (r e s u l t == 1){

System . out . p r i n t l n (”VALID HASH”) ;

} else {

System . out . p r i n t l n (”INVALID HASH”) ;

}

}

// printHash − p r i n t s lower t r i a n g l e o f matrix A

private stat ic void printHash (int [] [] A){

System . out . p r i n t (”\nThe hash i s : ”) ;

for (int i = 0 ; i < v ; i++){

for (int j = 0 ; j < i ; j++){

System . out . p r i n t (A[i] [j]) ;

}

System . out . p r i n t l n () ;

}

}

// pr in tHashStr ing − p r i n t s lower t r i a n g l e o f matrix A as s t r i n g

private stat ic void pr intHashStr ing (int [] [] A){

System . out . p r i n t l n (”\nThe hash s t r i n g i s : ”) ;

for (int i = 0 ; i < v ; i++){

for (int j = 0 ; j < i ; j++){

System . out . p r i n t (A[i] [j]) ;

}

}

System . out . p r i n t (”\n”) ;

}

// f a c t o r i a l − c a l c u l a t e s Big In teger f a c t o r i a l

private stat ic Big Intege r f a c t o r i a l (int n){

i f (n == 0){

return new Big Intege r (”1”) ;

}

Big Intege r bn = new Big Intege r ((new I n t eg e r (n)) . t oS t r i ng ()) ;

for (int i = 1 ; i < n ; i++){

bn = bn . mult ip ly (new Big Intege r ((new I n t eg e r (n−i)) . t oS t r i ng ())) ;

}

return bn ;

}

// toHexStr ing − conver t s a by te array to a hex s t r i n g

//with p o s s i b l e l e ad ing zero

private stat ic St r ing toHexStr ing (byte [] b){

St r i ngBu f f e r sb = new St r i ngBu f f e r (b . l ength ∗ 2) ;

for (int i = 0 ; i < b . l ength ; i++){

// look up high n i b b l e char

sb . append (hexChar [(b [i] & 0 xf0) >>> 4]) ;

// look up low n i b b l e char

sb . append (hexChar [b [i] & 0 x0f]) ;

}

Appendix 85

return sb . t oS t r i ng () ;

}

// toBinaryStr ing − conver t s a by te array to a binary s t r i n g

private stat ic St r ing toBinaryStr ing (byte [] b){

St r ing hex = toHexStr ing (b) ;

S t r ing bin = ”” ;

for (int i = 0 ; i < hex . l ength () ; i++){

bin += hexDigitToBinaryStr ing (hex . charAt (i)) ;

}

return bin ;

}

// hexDigi tToBinaryStr ing − conver t s a hex d i g i t to a b inary s t r i n g

private stat ic St r ing hexDigitToBinaryStr ing (char d){

switch (d){

case ’ 0 ’ : return ”0000” ;

case ’ 1 ’ : return ”0001” ;

case ’ 2 ’ : return ”0010” ;

case ’ 3 ’ : return ”0011” ;

case ’ 4 ’ : return ”0100” ;

case ’ 5 ’ : return ”0101” ;

case ’ 6 ’ : return ”0110” ;

case ’ 7 ’ : return ”0111” ;

case ’ 8 ’ : return ”1000” ;

case ’ 9 ’ : return ”1001” ;

case ’ a ’ : return ”1010” ;

case ’ b ’ : return ”1011” ;

case ’ c ’ : return ”1100” ;

case ’ d ’ : return ”1101” ;

case ’ e ’ : return ”1110” ;

case ’ f ’ : return ”1111” ;

default : return ” e r r o r ” ;

}

}

//////////

// main //

//////////

public stat ic void main (St r ing [] a rgs){

System . out . p r i n t l n (”Welcome ! ”) ;

// se tup

i f (args . l ength == 0){ //no args : v = 41 , f = 0

setConstants (41 , 0) ;

} else i f (args . l ength == 1){ //1 arg s e t s v , f = 0

int vv = In t eg e r . pa r s e In t (args [0]) ;

i f (vv < 6 | | vv > 41){ // i n v a l i d cho ice f o r v

System . out . p r i n t l n (”v must be between 6 and 41 . Good bye ! ”) ;

System . e x i t (1) ;

}

setConstants (vv , 0) ;

} else { //2 args s e t v and f

int vv = In t eg e r . pa r s e In t (args [0]) ;

int f f = In t eg e r . pa r s e In t (args [1]) ;

i f (vv < 6 | | vv > 41){ // i n v a l i d cho ice f o r v

System . out . p r i n t l n (”v must be between 6 and 41 . Good bye ! ”) ;

System . e x i t (1) ;

86 Appendix

}

i f (f f < 0 | | f f > vv ∗(vv−1)/4){ // i n v a l i d cho ice f o r f

System . out . p r i n t l n (” f must be l e s s than or

equal to v (v−1)/4. Good bye ! ”) ;

System . e x i t (1) ;

}

setConstants (vv , f f) ;

}

//menu

int done = 1 ;

while (done != 0){

done = menu () ;

}

System . out . p r i n t l n (”\nGood bye ! ”) ;

}

}

References

[1] S Arora. The Approximability of NP-hard Problems. Proceedings of the

thirtieth annual ACM symposium on Theory of computing, pp 337-348. ACM

Press, New York, 1998.

[2] Avalanche Effect. Wikipedia, 2006. Viewed 05/12/2006,

http://en.wikipedia.org/wiki/Avalanche effect.

[3] P Barreto. The Hashing Function Lounge, 2006. Viewed 25/09/2006,

http://paginas.terra.com.br/informatica/paulobarreto/hflounge.

html.

[4] M Bellare and P Rogaway. Collision-Resistant Hashing: Towards Mak-

ing UOWHFs Practical. Advances in Cryptology - CRYPTO ’97. Lecture

Notes in Computer Science 1294, pp 470-484. Springer-Verlag, Berlin, 1997.

[5] B den Boer and A Bosselaers. Collisions for the Compression Function

of MD5. Advances in Cryptology - EUROCRYPT ’93. Lecture Notes in

Computer Science 765, pp 293-304. Springer-Verlag, Berlin, 1994.

[6] B Bollobas. Random Graphs, 2nd edn. Cambridge University Press, Cam-

bridge, 2001.

[7] H J Broersma, L Xiong, and K Yoshimoto. Toughness and Hamil-

tonicity in k-trees. Memorandum No. 1576, Faculty of Mathematical Sci-

ences, University of Twente, 2001.

[8] F Chabaud and A Joux. Differential Collisions in SHA-0. Advances in

Cryptology - CRYPTO ’98. Lecture Notes in Computer Science 1462, pp

56. Springer-Verlag, Berlin, 1998.

[9] D X Charles, E Z Goren, and K E Lauter. Cryptographic

Hash Functions from Expander Graphs. Cryptology ePrint Archive, Report

2006/021, 2006. Viewed 13/12/2006,

http://eprint.iacr.org/2006/021.pdf.

[10] S A Cook. The Complexity of Theorem Proving Procedures. Third Annual

ACM Symposium on Theory of Computing, pp 151-158. ACM, 1971.

[11] T H Cormen, C E Leiserson, and R L Rivest. Introduction to Algo-

rithms. The MIT Press, Cambridge, 1996.

[12] Cryptographically Secure Pseudorandom Number Generator. Wikipedia,

2006. Viewed 06/12/2006,

http://en.wikipedia.org/wiki/CSPRNG.

[13] I B Damg̊ard. Collision Free Hash Functions and Public Key Signature

Schemes. Advances in Cryptology - EUROCRYPT ’87. Lecture Notes in

Computer Science 304, pp 203-216. Springer-Verlag, Berlin, 1988.

87

88 References

[14] I B Damg̊ard. A Design Principle for Hash Functions. Advances in Cryp-

tology - CRYPTO ’89. Lecture Notes in Computer Science 435, pp 428-446.

Springer-Verlag, Berlin, 1989.

[15] S Diffie and M E Hellman. New Directions in Cryptography. IEEE

Transactions on Information Theory 22(6), pp 644-654. 1976.

[16] H Dobbertin. Cryptanalysis of MD5 Compress. Announcement on the

Internet, 1996.

[17] D Eastlake and P Jones. US Secure Hash Algorithm 1 (SHA1), Request

for Comments (RFC) 3174, 2001. Viewed 11/12/2006,

http://www.ietf.org/rfc/rfc3174.txt.

[18] P Erdös and A Rényi. On Random Graphs. Publicationes Mathematicae

Debrecen 6, pp 290-297. Institute of Mathematics, University of Debrecen,

Hungary, 1959.

[19] M R Garey and D S Johnson. The Complexity of Near-Optimal Graph

Coloring. Journal of the ACM 23(1), pp 43-49. ACM Press, New York, 1976.

[20] M R Garey and D S Johnson. Computers and Intractability, a Guide to

the Theory of NP-Completeness. W. H. Freeman and Company, New York,

2000.

[21] P Gauravaram. Cryptographic Hash Functions. Talk at ICE-EM work-

shop on stream ciphers and hash functions, 2006.

[22] C Greenhill. Graph Theory Lecture Notes. Lecture at UNSW, Session 1,

2006.

[23] Z G Gutin and P Moscato. The Hamiltonian Page, 2000. Viewed

09/12/2006,

http://www.densis.fee.unicamp.br/~moscato/Hamilton.html.

[24] Hash Function. Wikipedia, 2006. Viewed 08/12/2006,

http://en.wikipedia.org/wiki/Hash function.

[25] HG400 Random Number Generators. random.com.hr, 2005. Viewed

09/12/2006,

http://random.com.hr/products/hg400/index.html.

[26] D Hong, B Preneel, and S Lee. Higher Order Universal One-Way

Hash Functions. Advances in Cryptology - ASIACRYPT ’04. Lecture Notes

in Computer Science 3329, pp 201-213. Springer-Verlag, Berlin, 2004.

[27] Icosian Game. Wolfram Math World, 2003. Viewed 30/11/2006,

http://mathworld.wolfram.com/IcosianGame.html.

[28] R Impagliazzo and M Naor. Efficient Cryptographic Schemes Provably

as Secure as Subset Sum. Journal of Cryptology 9, pp 199-216. Springer-

Verlag, Berlin, 1996.

[29] P Junod. Cryptographic Secure Pseudo-Random Bits Generation: The

Blum-Blum-Shub Generator. 1999. Viewed 11/12/2006,

http://crypto.junod.info/bbs.pdf.

References 89

[30] R M Karp. Reducibility Among Combinatorial Problems. Complexity of

Computer Computations, pp 85-103. Plenum Press, New York, 1972.

[31] V Klima. Finding MD5 Collisions - a Toy for a Notebook. Cryptology

ePrint Archive, Report 2005/075, 2005. Viewed 06/12/2006,

http://eprint.iacr.org/2005/075.

[32] V Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute.

Cryptology ePrint Archive, Report 2006/105, 2006. Viewed 06/12/2006,

http://eprint.iacr.org.

[33] D E Knuth. The Art of Computer Programming, Vol. 1 Fundamental Al-

gorithms, 2nd edn. Addison-Wesley Publishing Company, Reading, 1973.

[34] M S Krishnamoorthy. An NP-hard Problem in Bipartite Graphs. ACM

SIGACT News 7(1), pp 26. ACM Press, New York, 1975.

[35] W Lee, D Chang, S Lee, S Sung, and M Nandi. New Parallel Domain

Extenders for UOWHF. Advances in Cryptology - ASIACRYPT ’03. Lecture

Notes in Computer Science 2894, pp 208-227. Springer-Verlag, Berlin, 2003.

[36] A Lenstra, X Wang, and B de Weger. Colliding X.509 Certificates.

Cryptology ePrint Archive, Report 2005/067, 2005. Viewed 06/12/2006,

http://eprint.iacr.org/2005/067.

[37] C L Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, New

York, 1968.

[38] U Manber. Introduction to Algorithms. Addison-Wesley, Reading, 1989.

[39] MD5. Wikipedia, 2006. Viewed 15/12/2006,

http://en.wikipedia.org/wiki/Md5.

[40] MD5CRK. Wikipedia, 2006. Viewed 15/12/2006,

http://en.wikipedia.org/wiki/MD5CRK.

[41] R Merkle. One Way Hash Functions and DES. Advances in Cryptology -

CRYPTO ’89. Lecture Notes in Computer Science 435, pp 428-446. Springer-

Verlag, Berlin, 1990.

[42] R Merkle and M Hellman. Hiding Information and Signature in Trap-

door Knapsack. IEEE Transaction on Information Theory 24(5), pp 525-

530. 1978.

[43] M Naor and M Yung. Universal One-Way Hash Functions and their

Cryptographic Applications. Proceedings of the Twenty-first ACM Sympo-

sium on Theory of Computing, pp 33-43. ACM Press, New York, 1989.

[44] NIST Brief Comments on Recent Cryptanalytic Attacks on Secure Hashing

Functions and the Continued Security Provided by SHA-1. NIST, 2004.

Viewed 06/12/2006,

http://csrc.nist.gov/news-highlights/NIST-Brief-Comments-on-

SHA1-attack.pdf.

90 References

[45] C H Papadimitriou and K Steiglitz. Some Complexity Results for the

Traveling Salesman Problem. Proceedings of the 8th Annual ACM Sympo-

sium on Theory of Computing, pp 1-9. Association for Computing Machin-

ery, New York, 1976.

[46] J Pieprzyk. Hash Functions: Provable Security versus Custom Design.

Talk at ICE-EM workshop on stream ciphers and hash functions, 2006.

[47] B Preneel. Analysis and Design of Cryptographic Hash Functions. PhD

Thesis, Katholieke Universiteit Leuven, 1993.

[48] B Preneel. The State of Cryptographic Hash Functions. Lectures on Data

Security. Lecture Notes in Computer Science 1561, pp 158-182. Springer-

Verlag, Berlin, 1999.

[49] J J Quisquater. Cryptology and Graph Theory. Presentation, UCL

Crypto group, a member of EIDMA, 2005. Viewed 13/12/2006,

http://www.win.tue.nl/diamant/symposium05/abstracts/quis

quater.pdf.

[50] Random Number Generation. Computer Security Resource Center, Crypto-

graphic Toolkit, NIST, 2006. Viewed 05/12/2006,

http://csrc.nist.gov/CryptoToolkit/tkrng.html.

[51] Random Number Generator. Wikipedia, 2006. Viewed 09/12/2006,

http://en.wikipedia.org/wiki/Random number generator.

[52] B Rijmen and E Oswald. Update on SHA-1. Cryptology ePrint Archive,

Report 2005/010, 2005. Viewed 06/12/2006,

http://eprint.iacr.org/2005/010.

[53] R L Rivest. The MD5 Message-Digest Algorithm, Request for Comments

(RFC) 1321, 1992. Viewed 11/12/2006,

http://www.ietf.org/rfc/rfc1321.txt.

[54] P Sarkar. Construction of UOWHF: Tree Hashing Revisited. Cryptology

ePrint Archive, Report 2002/058, 2002. Viewed 11/12/2006,

http://eprint.iacr.org/2002/058.

[55] P Sarkar. Domain Extenders for UOWHF: A Generic Lower Bound on

Key Expansion and a Finite Binary Tree Algorithm. Cryptology ePrint

Archive, Report 2003/009, 2004. Viewed 11/12/2006,

http://eprint.iacr.org/2003/009.

[56] B Schneier. Applied Cryptography; Protocols, Algorithms, and Source

Code in C, 2nd edn. John Wiley & Sons, Inc., New York, 1996.

[57] B Schneier. New Cryptanalytic Results Against SHA-1. Schneier on Se-

curity, 2005. Viewed 07/12/2006,

http://www.schneier.com/blog/archives/2005/08/new cryptanalyt.

html.

References 91

[58] B Schneier. SHA-1 Broken. Schneier on Security, 2005. Viewed

07/12/2006,

http://www.schneier.com/blog/archives/2005/02/sha1 broken.html.

[59] Secure Hashing. Computer Security Resource Center, Cryptographic

Toolkit, NIST, 2006. Viewed 07/12/2006,

http://csrc.nist.gov/CryptoToolkit/tkhash.html.

[60] SHA Hash Functions. Wikipedia, 2006. Viewed 09/12/2006,

http://en.wikipedia.org/wiki/Sha1.

[61] SHA-1 Hash Function under Pressure. Heise Security, 2006. Viewed

07/12/2006,

http://www.heise-security.co.uk/news/77244.

[62] V Shoup. A Composition Theorem for Universal One-Way Hash Functions.

Advances in Cryptology - EUROCRYPT ’00. Lecture Notes in Computer

Science 1807, pp 445-452. Springer-Verlag, Berlin, 2000.

[63] S S Skiena. The Algorithm Design Manual. Springer-Verlag, New York,

1997. Viewed 11/12/2006,

http://ranau.cs.ui.ac.id/book/AlgDesignManual/BOOK/BOOK/BOOK.

HTM.

[64] R Steinfeld, J Pieprzyk, and H Wang. Higher Order Universal One-

Way Hash Functions from the Subset Sum Assumption. Public Key Crypto-

graphy - PCK 2006. Lecture Notes in Computer Science 3958, pp 157-173.

Springer-Verlag, Berlin, 2006.

[65] Subset Sum Problem. Wikipedia, 2006. Viewed 9/12/2006,

http://en.wikipedia.org/wiki/Subset sum problem.

[66] X Wang, D Feng, X Lai, and H Yu. Collisions for Hash Functions

MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report

2004/199, 2004. Viewed 07/12/2006,

http://eprint.iacr.org/2004/199.

[67] What is MD5? Tech FAQ. Viewed 09/12/2006,

http://www.tech-faq.com/md5.shtml.

[68] G Zemor. Hash Functions and Graphs with Large Girths. Advances in

Cryptology - EUROCRYPT ’91. Lecture Notes in Computer Scienece 0547,

pp 508-511. Springer-Verlag, Berlin, 1991.

[69] D Zuckerman. On Unapproximable Versions of NP-Complete problems.

SIAM Journal on Computing 25(6), pp 1293-1304. 1996.

