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Abstract

The topic of this thesis is the study of cryptographic hash functions, one of the

most important classes of primitives used in modern cryptography. The main aim

is the development of new techniques of cryptanalysis of dedicated cryptographic

hash functions.

We start with reviewing basic theoretical foundations of hashing. We present

different approaches to defining security properties more formally and after dis-

cussing then we review basic attacks on hash functions.

We recall Merkle-Damg̊ard iterative construction and discuss security prop-

erties of iterated hash functions. Next, we focus on practical designs of dedicated

hash functions. We attempt to present dedicated designs in a unified framework

and discuss some of their properties.

The main contribution of this thesis is the development of new cryptanalytical

techniques applicable to dedicated cryptographic hash functions, mainly from

the SHA family. We analyse functions SHA-1 and SHA-256 and show how the

problem of finding low weight codewords in linear codes is relevant to differential

cryptanalysis of those designs. We show previously unknown differentials of low

weight in the message expansion of SHA-1 and discuss the possibility of using

them to attack the whole function. We investigate the architecture of SHA-

256 and present two attacks on simplified variants of that function. The first

one shows that SHA-256 stripped of its diffusion boxes can be easily attacked.

The latter one presents an analysis of short variants of SHA-256 with modular

additions replaced by XORs and discusses the potential and limitations of this

very general approach.

Moving to alternative designs, we present an attack on a recently proposed

vii



hash function FORK-256. Again, we use coding theory tools to exhibit promis-

ing differential paths and exploit a particular weakness of the step transformation

that results in a very restricted propagation of differences through the step trans-

formation.

Finally, we investigate a more theoretical problem how the possibility of gen-

erating hashes that share a common part influences the complexity of finding

collisions.

We conclude with a brief outline of possible future research directions in the

area of cryptographic hash functions.
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1
Introduction

A hash function is a function that maps strings of arbitrary length to strings of

fixed length. This means that whether the input data is just a few words or the

whole video file a few gigabytes long, the output of the function is always of the

same length. The simplest example of a hash function is the modulo operation.

When we represent input data as a number (any data can be represented as a

string of bits and it can be seen as a binary representation of a number) and

take the remainder of the division by a fixed value we always end up with a

non-negative number smaller than that value.

There are many applications in which different kinds of hash functions are

used, ranging from data structures such as hash tables [94, Section 6.4] through

pattern-matching algorithms like [86] to checksum algorithms that help detecting

accidental errors in data. They all rely on the fundamental property that most

of the times different input values yield different output values, so the output of

the hash function can be treated as a kind of a “fingerprint” of the input data

that somehow identifies it. We can use this fingerprint to decide where to put

1



2 CHAPTER 1. INTRODUCTION

the data into the hash table, whether the particular substring is present in the

text or if the data has been transmitted correctly.

However, this does not mean that with a bit of skills and patience one cannot

find different input data that map to the same output for such functions. For

simple hash functions such as the modulo operation it is trivial: it is enough to

add a multiple of the modulus to get another number that yields the same output.

The ability to construct different messages that result in the same output value

may have serious consequences when exploited by a malicious person. One of

the vivid examples is a denial-of-service attack presented in [41] that uses the

ability to construct many messages with identical values of the hash function

to degenerate hash tables used by the intrusion detection system and thus slow

down the attacked application to the point where it cannot cope with incoming

data anymore. Another real-life example is an attack on FastTrack peer-to-peer

network. The FastTrack protocol [1], used by such popular file sharing programs

as Kazaa and iMesh, uses a hash function called UUHash to identify files stored

in nodes. This function is very weak as in the attempt to be maximally efficient

it does not process the whole file but only some parts of it. It is trivial to

find collisions for such a construction and this was used to “poison” the file

sharing network with bogus files containing rubbish but with hashes still matching

the original content. When such a fake was used when downloading a file, the

resulting file is of course unusable.

Clearly, if we want to maintain this desired ability of a hash function to

produce almost unique fingerprints of data even in the presence of a malicious

adversary a stronger construction is required. This motivates the design of cryp-

tographic hash functions.

Cryptographic hash functions Informally speaking, a cryptographic hash

function is a hash function that can be computed efficiently and has three addi-

tional security properties, illustrated in Fig. 1.1: it should be preimage-resistant,

second-preimage resistant and collision-resistant. We will investigate these no-

tions in details in Chapter 2, here we want to convey only the basic intuition.

A function is preimage-resistant, if having the output value of the function,

it is computationally infeasible to find any input that maps to that output. This
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? h

h

h?

h

h?

?

finding a collisionfinding a 2nd preimagefinding a preimage

Figure 1.1: Illustration of basic security properties of a cryptographic hash func-
tion h. Dashed values are given as inputs and the aim is to find values marked
with ’?’.

property is also called one-wayness as one can easily compute the function in one

way but cannot go back in the other direction.

A function is second preimage-resistant, if given the input value and the

corresponding output it is computationally infeasible to find another distinct

input that hashes to the same output.

Finally, a function is called collision-resistant, if it is infeasible to find a pair

of different inputs that map to the identical value.

Quite often input data is called a message and outputs of cryptographic hash

functions are called digests or just hashes.

We can interpret the preimage resistance property as inability to learn about

the contents of the input data from its digest. One can compare it to the hardness

of learning about the colour of eyes or hair of people based on the shape of their

fingerprints.

The collision resistance means that digests are almost unique for each given

message. If the message is changed, almost always the hash changes as well.

The word almost is significant, because when we map larger domains to smaller

ranges, collisions necessarily exist, but for properly designed cryptographic hash

functions with digests of sufficient length the probability that one can stumble

upon two different messages with identical hashes is so small that it can be

disregarded in all practical applications.

Applications of cryptographic hash functions A function satisfying all

the properties mentioned above is a powerful and versatile tool and can be used
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secure channel

?
=

insecure channel

h h

data data

Figure 1.2: Comparing the digest of data sent over insecure communication chan-
nel with securely obtained original digest allows to verify integrity of the data.

to achieve a variety of security goals. We briefly recall here a couple of most

common applications.

One of the prominent applications is information authentication. It enables

the verification of the integrity of data sent over an insecure communication

channel. The situation is presented in Fig. 1.2. Before sending the data its digest

is computed by the means of a cryptographic hash function. The digest is then

sent over a secure channel to the recipient who after receiving the original digest

computes the hash of the received data and compares both hash values. If they are

different, the information has been modified somehow on its way over the insecure

channel. On the other hand, if the digests are identical, with overwhelming

probability the message has not been altered, provided that the cryptographic

hash function is secure. Indeed, if it is possible to find second preimages for the

hash function in use, the adversary can manipulate the message on its way and

still be able to come up with modification that hashes to the original value.

Another widespread application of cryptographic hash functions are digital

signatures with appendix. Instead of using the signature algorithm to sign the

original data directly, a cryptographic hash function is used to compute the di-

gest of the message first and then, rather than the data, the digest is signed,

cf. Fig. 1.3. During verification phase, the digest of data to be verified is com-

puted and is used in the signature verification algorithm. The big advantage of

this approach is its increased efficiency of signing long messages. Signature algo-
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insecure channel

h

data

sign

private key

h

public key

verify Y/N ?

data

Figure 1.3: Digital signature schemes with appendix use cryptographic hash func-
tion h to obtain the digest of the data which is later signed.

rithms are much slower than hash functions and signing long messages directly

would take a very long time. By computing cryptographic digest of the data first

it is possible to avoid this costly computation. There are also some other, more

technical advantages of using cryptographic hash functions with digital signa-

tures when the hash function is used to destroy specific mathematical properties

of the signature scheme. It is not hard to see that in order to retain the security

of the digital signature the hash function must be collision resistant. Otherwise

the signer could find different messages that yield the same digest and thus two

different documents would have the same signature. This could lead to ambiguity

as to which document was actually committed to by the signer.

Finally, one of the very common applications of cryptographic hash functions

is password protection in access control systems (the Unix passwords mechanism

is one of the real-life examples). When a user tries to log in to the system, a

cryptographic hash of her password is calculated and compared with the one

stored in the database. If both hashes are equal, access is granted. This time

the essential property in use here is preimage resistance. If someone could read

the database and invert hashes stored there, he could bypass the access control

mechanism and obtain unauthorised access to the system.

This brief list by no means exhausts possible applications of cryptographic

hash functions. Applications we did not mention here include commitment pro-

tocols, generic digital signatures, message authentication codes and others. Some

further examples with more detailed analysis can be found in section 2.3 of Bart
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Preneel’s thesis [123]. According to Bruce Schneier [137],

(..) hash functions are used everywhere. Hash functions are the

workhorse of cryptography; they’re sprinkled all over security pro-

tocols. They’re used all the time, in all sorts of weird ways, for all

sorts of weird purposes.

Clearly, we can consider cryptographic hash functions as one of the funda-

mental classes of primitives used in modern cryptography. However, as pointed

out by B. Preneel [124], in spite of their popularity, there are not many theo-

retical results known in this area. Even after eight years this remark remains

true and there are much more questions than answers. This makes the study

of cryptographic hash functions an exciting research topic with serious practical

implications.

Designing cryptographic hash functions There exist three general ap-

proaches to designing cryptographic hash functions. The first one is aimed at

constructing functions that are provably secure in the sense that the problem

of breaking it is related to some well-studied computational problem considered

to be very difficult. Since violating specific security property of the function

would reveal a way of solving the underlying hard problem efficiently, the secu-

rity of such functions is considered very well founded. Of course since we do not

know whether those problems are hard indeed (in fact we do not even know if

P 6= NP) this guarantee is still only relative but so far nothing better has been

proposed. Classical examples include functions that rely on the hardness of fac-

toring a large composite number proposed by Damg̊ard [44] and Gibson [70] or

on difficulty of solving discrete logarithm problem [8]. More recent constructions

feature collision-resistant VSH [36] based on a number-theoretic problem related

to factoring, one way and collision resistant FSB [4] related to hard problems in

coding theory as well as provably one-way MQ-HASH [20] that depends on the

difficulty of solving systems of multivariate quadratic equations. Unfortunately,

there is also a price to pay for provable security. Most of functions designed that

way need longer digests to achieve the desired level of security. They are also

relatively less efficient as they usually require complex mathematical operations.
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Another approach is to use a trusted block cipher in a special mode that turns

the whole construction into a hash function. Functions constructed according to

this paradigm also come with a certain type of security proof that relates the

security of the hash function to the security of the block cipher. This direction

received a lot of attention over the years and the fundamental results in this field

are [126, 23]. The idea of reducing the security of the hash to the security of

a block cipher has its advantages and drawbacks. The main advantage is that

having a block cipher that is considered secure we can construct a hash function

that does not have any hidden weaknesses and we can trust it as long as we trust

the block cipher. On the other hand, some people feel uncomfortable putting all

eggs in one basket and relying on just one primitive (i.e. the block cipher). On

the top of that, such constructions suffer from a loss of efficiency compared to

the speed of the block cipher [22].

The third approach is to design cryptographic hash functions from scratch.

Such designs are called dedicated hash functions. The main advantage of such

constructions is their speed and low resource requirements in both software and

hardware implementations. Undoubtedly, this made them the most popular class

of cryptographic hash functions used nowadays. Examples include such famous

functions as MD5 [131] as well as U.S. government standards SHA-1 and SHA-

256 [116]. Unfortunately, also here there is a price to pay for this exceptional

speed as these designs come without any formal security guarantees. The pro-

cess of development of such functions can be compared to some evolutionary

mechanism. Designers apply “best engineering practises” known so far to create

new algorithms and publish them. Published constructions undergo scrutiny by

members of cryptographic community who try to develop new attacks. Some of

them are quickly broken, other survive longer and may inspire next generations

of functions that use best design principles of the existing ones to (hopefully)

improve upon them. However, this process cannot be fully relied upon. Even if

one could assume that the potential quality of the algorithm can be measured

by the man-hours spent on analysis, it is very hard to estimate even how much

attention given algorithm received from the academic community. This leaves all

the dedicated hash functions at the constant threat of compromise by new clever
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analytical techniques.

This thesis The main subject of this thesis is the study of new cryptanalytical

techniques applicable to dedicated cryptographic hash functions. Our aim is the

development of new cryptanalytical techniques applicable to dedicated heuristic

designs. We join the evolutionary environment in which dedicated hash func-

tions are born and eliminated by cryptanalysts trying to develop new attacks

on such functions. This approach is not as destructive as one could think at

first. Breaking a design or showing some particular weakness in an algorithm

enriches our knowledge and indirectly enhances further dedicated designs. Also,

we hope that our contribution to analysis of dedicated hash functions will en-

courage researchers and particularly industry to consider more seriously the first

class of designs, i.e. provably secure constructions. We believe that while for some

low-risk applications dedicated hash functions are the correct solution, provably

secure cryptographic hash functions are the future of hashing for critical appli-

cations.

We start our thesis with detailed analysis of security requirements and def-

initions in Chapter 2. This discussion is quite general and not only introduces

various security properties both explicitly and implicitly present in the vast lit-

erature on the subject more formally but also tries to organise them and present

in a coherent way. We also give some background information on various types

of attacks applicable to hash functions.

In Chapter 3 we move on to the first large family of dedicated hash functions,

MD5-based designs. We present a unified view on all functions of that class.

After describing MD5 and briefly explaining principles of the famous analysis of

MD5 performed by the team of Professor Xiaoyun Wang we move to the analysis

of SHA-1. We present our contribution to the analysis of this algorithm that

allows for finding good differential paths in SHA-1. We conclude the chapter

with a section that covers the latest developments in the analysis of SHA-1.

Considering the successful attack on SHA-1, quite a natural question arises

about the security of SHA-256 and relatives – another family of NIST-approved

hash functions, so called SHA-2 designs. We contribute to the security analysis

of those designs developing attacks on two simplified variants of SHA-256. The
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results of this research are presented in Chapter 4. Firstly, we show that mixing

structures used in SHA-256 are essential to the security of the design as it is

possible to launch an attack on the version without them. Secondly, we present

our analysis of short variants of SHA-256 with all the modular additions replaced

by XORs.

In Chapter 5 we present cryptanalysis of the recently proposed hash function

FORK-256 that was meant to be a possible replacement for SHA-256. We present

how to construct differential paths in FORK-256 and show how to use them to

efficiently obtain near-collisions for this function. We further show that this

attack can be extended to find colliding digests faster than by birthday-paradox

methods with substantially less computational resources and in a way that is

suitable for parallelisation.

In Chapter 6 a more theoretical problem inspired by our FORK-256 analysis

is analysed. We investigate how the ability of generating pairs (or tuples) of

digests that have a common part influences the chance of finding collisions in

different scenarios.

We close the thesis with the consideration of some future research directions.
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2
Security requirements and design principles

We dedicate this chapter to the theoretical treatment of fundamental concepts

behind hashing. We start with discussing three different approaches to defining

computational hardness and discuss their advantages and drawbacks. The notion

of computational difficulty is central to defining fundamental cryptographic prop-

erties so only after we discuss it we can present fundamental definitions in the

appropriate context and discuss their relationships. In practice however, much

more is expected from a cryptographic hash function than only preimage and

collision resistance and we also review some of those widely assumed properties

that are not covered by basic requirements.

In the second part of this chapter we concentrate on attacks on cryptographic

hash functions that aim at violating security properties we discussed in the first

part. We present a classification of attacks from the point of view of their general-

ity and required resources and we recall most important generic attacks on hash

functions. Finally, we present Merkle-Damg̊ard iterative construction, one of

the most prevalent design principles used to build cryptographic hash functions,

11
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discuss its fundamental properties and review generic attacks on hash functions

designed using this principle. We close this chapter with some alternative ap-

proaches that aim at eliminating weaknesses of this method.

2.1 Different notions of computational difficulty

In the previous chapter we informally introduced cryptographic hash functions

by saying that they are hash functions satisfying three fundamental security re-

quirements of being preimage resistant, second preimage resitant and collision

resistant. In all of these definitions we required that solving the relevant problem

should be computationally infeasible. However, this is not a precise term and it

can mean different things. Depending on the adopted notion of infeasibility we

get a different model of security. We present here three main directions that for-

malise the notion of computational hardness and result in three security models

for hash functions.

The first notion of infeasibility stemmed from classical complexity theory. In

classical analysis of algorithms, one considers how efficiently an algorithm can

solve a problem by expressing its running time as the function of the description

size of the problem instance. When this complexity function is bounded by some

polynomial, the algorithm is considered to be efficient. Note that the complexity

function is defined on integers and we usually are interested in asymptotic results,

e.g. when problem instances are sufficiently large.

Similar approach to defining collision resistance formally has been used by

Damg̊ard [44]. He used infinite families of hash functions, each member h having

its own security parameter k and being a function h : Σ∗ → Ak where Ak is some

finite set. He used the security parameter k as the value corresponding to the

instance size in classical complexity theory and proposed the following definition

of computationally infeasible problem.

Definition 2.1 (Damg̊ard [44]) Let {Ck} be a Boolean circuit family of poly-

nomially bounded size. Let ǫk be the fraction of the instances of size k which are

solved by Ck. A problem is computationally infeasible if ǫk as a function of k

vanishes faster than any polynomial fraction.
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Thanks to this notion one can formally define collision resistance in this setting

as follows.

Definition 2.2 (Damg̊ard [44]) A family of collision resistant hash functions

is a set of hash functions with the following properties:

• There is a probabilistic polynomial time algorithm, which on input value of

security parameter selects uniformly and randomly a member of that family

with the given value attached.

• All functions in the family are computable in polynomial time.

• The problem of finding x 6= y such that h(x) = h(y) for a given h in the

family is computationally infeasible to solve.

Above definitions are given here only as an example to illustrate this particular

approach. A detailed treatment of this approach is given in [123, Chapter 4].

The fundamental drawback of this notion of hardness is that it requires infinite

families of hash functions and obtained results are in a sense asymptotic, while

in real life we may require to guarantee the security of some concrete, finite

construction.

The need to deal with security assertions without resorting to asymptotics

gave raise to a new approach to security called “concrete security”. In that

framework, hash functions are described as finite families of functions, H : K ×
D → R, where K is the set of keys that index the family. The central role

in this framework plays the notion of a computational experiment in which an

adversary takes part. Basically, we define a sequence of operations requiring

some interaction with the adversary and winning conditions for him. Then we

define the advantage of the adversary as the probability that he is doing well,

i.e. the probability that he wins the game taken over all possible keys and random

choices made in the experiment. The algorithm is secure when no adversary with

appropriately bounded time and resources can gain significant advantage in the

experiment that aims at violating specific security property. To illustrate it on

an example, we recall here the concrete security definition of collision resistance

from [133].
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Definition 2.3 (Rogaway, Shrimpton) Let H : K×M→ {0, 1}n be a hash-

function family and let A be an adversary. Then we define

Adv
Coll
H (A) = Pr[K

$← K; (M,M ′)
$← A(K) : (M 6= M ′)∧HK(M) = HK(M ′)].

In the above M
$← S denotes choosing a random element from the distribution S

and calling it M . The authors do not define the threshold for which the advantage

of the adversary becomes unacceptable. It depends on the applications, but for

collision resistance and functions returning n bit hash one would usually consider

2−n/2 as the threshold based on the bound derived from the birthday paradox

attack.

The concrete security approach is rigorous enough to be used to prove different

kinds of security reductions but is still “down-to-earth” so that it is well suited

to model real situations. The only issue in the context of hash functions is

the necessity of representing them as families of functions. This contrasts with

current practice where most of cryptographic hash functions are just single fixed

instances rather than families. One could argue though that the faults lies on the

side of current practises.

This brings us to the third notion of computational difficulty aimed at formal-

ising hash function properties, recently considered by P. Rogaway in [132] and

called “human ignorance model”. Instead of requiring that there is no efficient

adversary that finds collisions (which is impossible for single-instance functions)

we insist that there is no efficient adversary known to man that finds collisions

for the given function. Since the rest of the construction remains the same, one

can reason about different security reductions in a similar manner as in concrete

security setting. The only difference is that every result is now related to current

human inability of solving a specific problem. This appropriately reflects the cur-

rent situation in the world of hash functions, but the question of practical value

of such assumptions remains open.
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2.2 Fundamental properties and their relationships

After this note on different meanings of computational difficulty we can proceed

to state more formally definitions of the three fundamental properties of hash

functions. Since in this thesis we are mainly concerned with the security of fixed,

single instance designs, we recall after [110] definitions in their classical form,

essentially compatible with “human ignorance” model.

Definition 2.4 (Menezes et al. [110]) A hash function h is preimage resis-

tant if for essentially all pre-specified outputs, it is computationally infeasible to

find any input which hashes to that output, i.e., to find any preimage x0 such that

h(x0) = y when given any y for which a corresponding input is not known.

Definition 2.5 (Menezes et al. [110]) A hash function h is second preimage

resistant if for essentially all pre-specified outputs, it is computationally infeasible

to find any second input which has the same output as any specified input, i.e.,

given x, to find a 2nd-preimage x′ 6= x such that h(x′) = h(x).

Definition 2.6 (Menezes et al. [110]) A hash function h is collision resis-

tant if it is computationally infeasible to find any two distinct inputs x1, x2 which

hash to the same output, i.e., such that h(x1) = h(x2).

We do not attempt here to present the evolution these notions underwent over

the years, for more historical background and discussion of hashing terminology

we refer the reader to the recent paper [38].

A natural question that arises is about relations between those notions. We

have the following simple observations that establish some of them. The relation

between collision resistance and second preimage resistance is straightforward.

Fact 2.1 (Menezes et al. [110]) Collision resistance implies second preim-

age resistance of hash functions.

More complex relationship exists between collision resistance and preimage

resistance as we need an additional assumption about the size of the domain and

the range.
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Fact 2.2 (Stinson [142]) Suppose h : D → R is a hash function where |D| and

|R| are finite and |D| ≥ 2|R|. If there exists a Las Vegas algorithm that returns

preimages under h of randomly and uniformly distributed y ∈ R with probability 1

than there exists a Las Vegas algorithms that finds collisions for h with probability

1/2.

The extra assumption is significant since when the function does not compress,

it may be collision resistant but not one way (a trivial counterexample is the

identity function).

To be able to draw more conclusions on relationships between those proper-

ties one needs to use more formal definitions of computational infeasibility. A

classical result in this area is due to P. Rogaway and T. Shrimpton [133]. Using

the concrete security approach they defined seven types of security properties

and analysed conventional implications (when one property unconditionally im-

plies another), provisional implications (when one property implies another under

some additional assumptions) and separations (when the two are independent).

Results of this meticulous study can be summarised in a diagram presented in

Fig. 2.1. The three classical notions of security are Pre for preimage resistance,

Sec for second preimage resistance and Col for collision resistance. There are also

a- and e- variants of some of the notions depending on how the key is chosen

(i.e. the instance of the function). Provisional implications, marked by dashed

lines depend on some extra assumptions about the size of the domain and range,

just as we have seen before. They hold when the function compresses the in-

put significantly (e.g. from 256 bits to 128 bits). Clearly, collision resistance

always implies second preimage resistance and when the function is compressing

the input enough, it also implies preimage resistance. This shows that the cru-

cial property is collision resistance and understandably this property is the main

focus of most security assessments of cryptographic hash functions.

2.3 Other desired properties

Even though cryptographic hash functions emerged as constructions providing

the three fundamental properties described before, practical applications gave

rise to some additional properties that are often implicitly assumed. When RSA
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Figure 2.1: Relations between different notions of hash function security [133].
Solid black lines represent classical implications, dashed blue lines mean provi-
sional implications.

public key cryptosystem was invented and first attacks on this scheme were pub-

lished [47, 54], hash functions were suggested as a tool for preventing such attacks.

D. Denning suggested in [52] that the hash function should destroy homomor-

phic properties of the underlying public key cryptosystem. This notion could

be rephrased as the requirement that the hash function should not have any de-

tectable structure or that it “behaves randomly”. It can be modeled by picking

the hash function as a randomly chosen element of the family of all functions

mapping given domain to the given range. This gave raise to two theoretical

concepts that try to capture that intuition, random oracles and pseudorandom

families.

2.3.1 Simulation of random oracles

A random oracle is a theoretical concept used to describe a perfect random func-

tion. A random oracle works by returning a value drawn uniformly and indepen-

dently from its range for any new input. To make it a function, it returns the

same value for inputs that were already queried in the past.

The first mention of such a construction appeared in [63]. Later, Bellare and

Rogaway used it to formalise some security notions used in public key cryptog-

raphy [10] and the random oracle model became an important tool for proving

security of cryptographic protocols. Most notably, it was used to prove security

of two very important schemes widely used in practice, RSA-OAEP [11] for en-
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cryption with RSA and RSA-PSS [12] for RSA signatures. Other results include

the proof of security of a parallel signcryption scheme proposed by Pieprzyk and

Pointcheval [121]. The main principle of this methodology is to prove that the

given protocol is secure when some parts of the protocol are modeled as random

oracles. In the real-world implementations, random oracles are replaced by con-

crete primitives, e.g. hash functions. The whole aim of this approach is to provide

some kind of assurance that the protocol does not have security flaws by itself.

However, Canetti et al. showed in [29] that there exist protocols that are prov-

ably secure in the random oracle model and inherently insecure when the random

oracle is replaced by any concrete hash function. Another, more realistic example

was given in [6]. This initiated the trend of avoiding random oracle proofs where

possible and stimulated research into new security paradigms that are based on

more realistic assumptions (such as intractability of factorisation and solving dis-

crete logarithm, to name the two most commonly used in cryptography). So far,

it seems that in spite of some results in this direction [28], there is no universal

agreement on what the random oracle emulation could mean.

2.3.2 Hash functions as pseudorandom families

A related attempt at formalising “random behaviour” of hash functions is the use

of pseudorandom function families. They were firstly defined in the complexity

theoretic setting [71]. The essential idea behind pseudorandom function families

(PRFs) is that they are indistinguishable from families of truly random functions

(i.e. drawn uniformly from the set of all functions with given domain and range)

by adversaries with reasonable resources. This methodology received considerable

attention over the years and is an established way of proving a variety of security

results [99].

PRF families can be also defined in the concrete security model and this

setting was used by Bellare who proved an important result [5] saying that the

security of widely used HMAC message authentication algorithm [7] relies solely

on the assumption that the compression function of the underlying hash function

is a PRF when keyed by the chaining variable input.

Another widespread application in which “random behaviour” of a crypto-
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graphic hash function is essential is generation of pseudorandom numbers, as

described in NIST standard [66, 67]. The PRNG described there uses SHA-1

and it was shown in [53] that this generator is secure if f( (·+ K) mod 2n, IV )

is a PRF family where f is the compression function of SHA-1. The Linux

/dev/random device also makes use of SHA-1 internally (at least used to in ker-

nel 2.6.10) [72] and Dodis et al. considered in [61] another related application,

namely randomness extractors that work properly when underlying compression

functions behave like PRF families.

2.3.3 Security of truncated variants

Finally, it is worth to mention one more implicit assumption often made about

cryptographic hash functions that hash functions obtained by truncating the

output hash to a reduced number of bits are still secure. This means for example

that when truncating the n-bit hash functions to only t bits, any collision finding

attack on such a reduced variant should require 2t/2 operations. J. Daemen in

his PhD thesis [42] called such functions hermetic. A practical example of the

importance of this requirement is the design of SHA-224 [116] that is basically a

truncated to 224 bits version of the hash function SHA-256.

2.4 Classification of attacks

An attack on a cryptographic hash function is an algorithm aimed at violating one

of the assumed security properties of the function. In the world of cryptographic

hash functions a number of distinct notions of attacks exist. In this section we

classify them based on their fundamental principles.

The first division is based on the amount of information the cryptanalyst is

given and it splits attacks into generic and shortcut attacks.

A generic attack is an algorithm-independent attack that treats the hash func-

tion as a “black box” and uses only high-level assumptions about its behaviour

like the length of the digest or the distribution of output values.

The opposite of this approach are attacks that depend on the algorithm. A

shortcut attack explicitly uses particular structure of the hash function to mount

an attack exploiting a design weakness. Most of this thesis, starting from Chapter
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computational complexity
264practical theoretical

algorithm
specific

algorithm
independent

Figure 2.2: Relations between different classes of attacks.

3, is dedicated to shortcut attacks on dedicated hash functions.

Another, independent classification divides attacks into practical and theoret-

ical. This distinction is based purely on the relation of computational complexity

of the attack to the current limits of computing technology. Basically, a practi-

cal attack is an attack that requires computational resources that are available

at the moment. This is opposed to theoretical attacks that need unrealistic re-

sources and thus are impossible to implement with current computing technology.

Of course, this means that this distinction is rather fluid and it changes as the

technology progresses. The project distributed.net showed in 2002 [2] that a

complexity of around 264 operations is definitely feasible. Nowadays, this figure

is higher, but there is a general consensus that 280 operations is going to be

definitely out of reach of technology for considerable time. We can summarise

relations between different classes of attacks as a diagram presented in Fig. 2.2.

There is one more remark that should be made while speaking about relations

between attacks. Quite naturally, shortcut attacks are interesting only when

they are more efficient than the best generic attack available for the particular

algorithm and so only those are labelled as “attacks” at all.

2.5 Generic attacks

In this section we concentrate on generic, algorithm independent attacks as they

determine upper bounds on complexity of shortcut attacks we focus on in the

remaining chapters.
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We restrict our attention to fixed functions h : D → {0, 1}n that produce

n–bit long hashes. We introduce the following definition, that will be used later.

Definition 2.7 We call the function h : D → {0, 1}n regular, when

∀y ∈ {0, 1}n Pr[ h(x) = y ] =
1

2n
.

Note that such a definition is somehow problematic when we want to assume

D = {0, 1}∗ as we are supposed to take the probability over all possible values

of x and this value is not well-defined since the domain is infinite. There are

two options here. One, more practical, is to restrict the domain to the set of

inputs of huge, but fixed length, e.g. D = {0, 1}264
. This is usually enough as

in practice we are also restricted when it comes to input lengths (by padding

method and also computational resources). Since a preimage or a collision for a

function restricted to inputs of fixed length is also a preimage or a collision for the

unrestricted function, this restriction does not impair analysis. More theoretical

solution would be to consider a family of functions with different input lengths

and use limits at infinity as values for probabilities but this approach seems

considerably more complex and also less useful in practice.

2.5.1 Brute-force search

This is the least sophisticated class of attacks and is based on simple evaluation

of randomly chosen inputs in the hope of finding a preimage, second preimage

or a collision. Assuming that the attacker is able to perform q = 2r evaluations,

the probability that the attacker successfully finds the preimage for a randomly

chosen output y is 2r−n. This result should be taken into account when designing

appropriate output length of a hash function as for too short digests this trivial

attack may be or become feasible. When we pick just one point, this probability

is 2−n and we speak about a random attack.

2.5.2 Birthday paradox attack

We can do much better in case of the problem of finding collisions. Instead of

generating pairs, comparing hash values and later discarding them if they do
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not match, we can store generated results and use them to find collisions more

efficiently. More precisely, we use the following procedure

x1
$← D

y1 ← h(x1)

for i = 2 to q do

xi
$← D

yi ← h(xi)

if yi = yj and xi 6= xj for some j ∈ {1, . . . , i− 1} then

return (xi, xj)

end if

end for

return failure

where
$← means drawing an element from the set randomly and uniformly.

It is easy to show that if the function is regular, the probability pq of success

of this algorithm can be estimated as

pq = 1−
q−1
∏

i=1

2n − i

2n
= 1−

q−1
∏

i=1

(

1− i

2n

)

≈ 1−
q−1
∏

i=1

e−i/2n ≈ 1− e−
q2

2n+1 .

It follows that when we use q =
√

2 · 2n/2 values we have a good chance (approx.

0.63) of finding a collision.

If we modify this procedure and keep running until we find a collision, the

expected number of evaluations of the function is
√

π/2 ·2n/2 (cf. [146, Appendix

A]).

A variant of this approach has been considered by G.Yuval [163] who showed

how by generating two sets of variants of a message one can exploit hash colli-

sions to obtain identical signatures of two different documents. This and similar

scenarios have been studied in more detail in [118].

It seems that to find a collision, one would need to store around 2n/2 hashes,

however using a method proposed by J.-J. Quisquater and J.-P. Delescaille [127,

128] one can achieve the same asymptotic speed but much smaller storage re-

quirements. The method uses the restriction of the hash function h to a domain

equal to the range to generate a random walk in the space of digests by iterative
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application of the function, i.e. the procedure described as

x0
$← {0, 1}n,

xi ← h(xi−1), for i ≥ 1.

For sufficiently large domain sizes, the restricted map is almost never bijective

(what comes from the fact that the number of bijections is 2n! and the number

of all functions is 2n2n
), so we can expect collisions to exist. Now, since the set

of values is finite, there exist some value l ∈ N such that h(xl+c) = h(xl) but

xl+c 6= xl. This is a collision. The trick is to recognise one when it happens.

Quisquater and Delescaille used so called distinguished points method to store

only a small fraction of points on the path. When a collision is detected in the

stored table of distinguished points and verified as a real collision, it is enough

to reconstruct the last part of the path from the last distinguished point. This

allows to decrease memory requirements dramatically (in the original paper [127]

distinguished points that have 20 MSB bits equal to zero were used, so the gain

was of factor 220). This method can be also efficiently parallelised as shown

in [146]. This smart approach made collision search attacks more feasible in

practice, however, asymptotically, it still needs an exponential amount of storage

memory, but with a very small constant.

So far, for the sake of simplicity, the above analysis assumed that the hash

function is regular. However, this may not be the case. An important study

into hash functions which are not regular was performed recently by M. Bellare

and T. Kohno [9] who investigated what is the impact of “regularity” of the

function on complexity of birthday attacks. For a hash function h : D → R
where R = {R1, R2, . . . , Rr} they defined the parameter called balance as

µ(h) = logr

[
d2

∑r
i=1 d2

i

]

,

where di = |h−1(Ri)| and d = |D|. This parameter is always a real number

between 0 and 1 and characterises the regularity of the function, with µ(h) = 1

for a regular function and µ(h) = 0 for the worst case of a constant function. They

proved a number of quantitative results showing that finding collisions might be
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significantly faster for functions of low balance.

2.6 Iterated hash functions

It is not easy to design a function that can process arbitrary, or at least huge

and unknown in advance, amounts of data. The natural approach is to use some

kind of iterative process that processes data in chunks. This solution was firstly

suggested in R. Merkle’s PhD thesis [111]. The main idea is to use a compression

function, i.e. a function that maps longer, but fixed size intputs to shorter outputs.

In other words a compression function is a function

f : {0, 1}m+n → {0, 1}n

where m > 0. Then one can use it to hash arbitrary length data using the

following process, independently studied by R. Merkle [112] and I.Damg̊ard [45].

INPUT: message M ∈ {0, 1}∗

OUTPUT: digest h(M) ∈ {0, 1}n

• M := M ||1||0z where z is the smallest integer s.t. m divides |M |+ 1 + z.

• (optionally) Append a block of m bits with encoded initial length of the

message M .

• Split the message M into blocks of length m, M = (M0,M1, . . . ,Mb).

• Perform the iterative compression

H0 := IV {quite often IV = 0b}
for i = 0 to b do

Hi+1 := f(Hi||Mi) (2.1)

end for

• Return the result h(M) = Hb+1.

This process is illustrated in Fig. 2.3. A fundamental property of this construction

proved in [112, 45] assures that as long as the padding contains the length of

the initial message the whole hash function is collision resistant as long as the

compression function is collision resistant. Since this result reduces the problem
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Figure 2.3: Iterative application of a compression function f yields a construction
that can be used to hash messages M of arbitrary length.

of designing secure hash functions to the more manageable problem of designing

secure compression functions, this design principle has been widely adopted and

currently vast majority of published hash functions use the iterative construction.

2.6.1 Weaknesses of iterated hash functions

It turns out that in spite of the security reduction concerning collision resis-

tance, iterative cryptographic hash functions have a number of other, more subtle

weaknesses, especially when the reference model is a perfect hash simulated by a

random oracle. We briefly mention most important results in this section.

Multicollisions One can think about a generalisation of the notion of a col-

lision from pairs to r–tuples of messages. We get the following, straightforward

definition.

Definition 2.8 An r–multicollision for the cryptographic hash function h, where

r ≥ 2, is an r–tuple (M1,M2, . . . ,Mr) of messages such that Mi 6= Mj for i 6= j,

i, j ∈ {1, . . . , r} and

h(M1) = h(M2) = . . . = h(Mr) .
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Figure 2.4: For an iterated hash function, a 2t–multicollision can be constructed
from a sequence of t compression function collisions.

When we consider a perfectly random hash function, finding an r–multicolli-

sion requires around 2n(r−1)/r evaluations of the hash function. When r is large,

this value is approaching 2n and thus it is significantly harder to find multicol-

lisions than ordinary collisions that require around 2n/2 of work. However, in

2004 A. Joux showed [84] that finding multicollisions is significantly easier for

iterated hash functions. He observed that after finding t pairs of message blocks

(B1, B
′
1), . . . , (Bt, B

′
t) that yield collisions for the compression function f one can

easily generate 2t t-block messages b that hash to the same digest by setting b =

(b1, b2, . . . , bt) where bi is either Bi or B′
i. This idea is illustrated in Fig. 2.4. The

total complexity of finding such 2t–multicollisions is of order t2n/2, significantly

less than for an ideal hash function.

Second preimages faster than 2n In an ideal hash function with n bit output

modeled as a random oracle, finding a second preimage requires around 2n calls

to the hash function. We would like any hash function to have this behaviour, but

R. Dean observed that this property is not satisfied for iterated hash functions as

long as it is easy to find fixed points in the compression function [51]. The problem

of finding second preimages has been also studied by J. Kelsey and B. Schneier

who showed in [88] that it is possible to do it faster than 2n operations even

without the need for finding fixed points. Their main result shows that for long

messages, consisting of 2k blocks it is possible to find second preimages with work

factor k · 2n/2 + 1 + 2n−k+1.

The idea is based on so called expandable messages which are sets of pairs of
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Figure 2.5: After generating an expandable message one can find a second preim-
age for a long message by trying to link the output hash of the expandable message
with one of the chaining values of the initial long message.

messages of differing lengths that can be used to construct messages of varying

lengths and at the same time producing the same hash value before the applica-

tion of the final block that contains the length of the message. They can be seen

as generalisation of multicollision, where instead of just a single message block

one can use more blocks as long as the hash state collides at the end.

Having such an expandable message that can produce messages of lengths

from k blocks to 2k + k + 1 blocks one can find a second preimage for a long

message m = (m0,m1, . . . ,m2k+k) consisting of 2k + k + 1 blocks. Basically, we

store all the intermediate chaining values and then try to link the final hash of

the expandable message with one of the chaining values of the original message.

When we find a match we can always adjust the expandable message to make it

the same length as the first part of the initial message from the start to the point

where the match was found and thus obtain two long messages of the same length

that collide at some point. Then the expandable message is appended with the

rest of the initial message to yield the same final hash since hashing the length

block will give the same result now. This procedure is illustrated in Fig. 2.5.

The total complexity is equal to k · 2n/2+1 + 2n−k+1. The first term is due to the

generation of the expandable message, the second one describes the complexity of

finding the link between expandable message and one of the chaining values. In

practice, this means that for SHA-1 and a very long message of about 260 bytes

one can find second preimages in 2106 effort rather than the expected 2160.
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Distinguishing iterative hash functions Another specific feature of iterated

hash functions is the possibility to distinguish them from random oracles even

if the compression function f is a random oracle itself. If the scheme does not

include the block length and we have access to the compression function, we can

easily do this in the following way, described in [40]. We first query the hash

function h to get u = h(m1) where m1 is a single block message. Then we query

the compression function to get v = f(u,m2). In the final step we query the

hash function again to get z = h(m1||m2) and compare the output z with v. If

they are identical we are almost sure that the hash function h is an iterated hash

function based on the compression function f .

Even if we have access to only the whole hash function h we still can tell

it apart from a random function using the birthday attack and the message ex-

tension property. In the first step, we look for two different one-block messages

m1,m
′
1 that collide under the hash function h. Then, we pick another random

block m2 and test whether h(m1||m2) = h(m′
1||m2). For an iterated hash func-

tions those values will be identical, for a truly random function h the probability

of this equality is negligible. In fact, this message extension property has been

used in some practical attacks that are feasible once we can find even a single

collision.

Iterated construction does not preserve balance As we have already men-

tioned, [9] deals with analysis of the impact of function’s balance on its generic

properties. The paper also considers an interesting problem of balance preserva-

tion that asks whether the iterated hash function based on a regular compression

function is also regular. This can be seen as an analogue to the preservation of

collision resistance proved by Merkle and Damg̊ard. Unfortunately, the answer

is no, as shown by the following counterexample. Let the compression function

f : {0, 1}n+m → {0, 1}n be defined as f(c||m) = c. It is regular since each point

in the range {0, 1}n has a preimage of size 2m. However, when this function is

used to build an iterated hash function h, for all input messages the value will be

IV , the initial value used to start the iteration and we end up with a constant

function that has the worst balance equal to zero.
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2.6.2 Alternative constructions

Due to weaknesses described above, researchers are looking for alternative ways

of constructing hash functions out of smaller building blocks that do not have

weaknesses of the Merkle-Damg̊ard design.

Wide pipe As a possible means of strengthening the classical Merkle-Damg̊ard

iteration against some of the attacks, S. Lucks proposed a construction called wide

pipe [100]. He considered hash functions built from two compression functions,

C ′ : {0, 1}w+m → {0, 1}w and C ′′ : {0, 1}w → {0, 1}n where w > n is a parameter

denoting the size of the hash function state. The modified iteration uses the

compression function C ′ with wider state and only after hashing the last message

block, the final transformation C ′′ is applied that reduces the size of the state

to n bits, as presented in Fig. 2.6. Assuming that the final iteration is secure

(i.e. the composition C ′′ ◦C ′ is collision resistant), extended state prevents some

of the attacks such as multicollisions or second-preimages. The drawback of this

approach is that it uses a larger state that may result in decrease of efficiency

and it looks like the weakest part cryptanalysts could concentrate on would be

the final compression function C ′′.

M1 M2 M3 M4

h(M)

IV

C′

C′

C′

C′

C′′

Figure 2.6: Wide pipe construction prevents some of the attacks on iterated hash
functions by using a larger intermediate state of w bits handled by compression
function C ′ that finally gets reduced to n bits by another compression function
C ′′.
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Randomised Hashing An interesting improvement aiming at strengthening

the MD construction was recently presented by Halevi and Krawczyk [73]. Their

construction uses the classical Merkle-Damg̊ard iteration without any structural

changes but introduces two ways of randomising the message. In the first one,

each message block Mi is XORed with a random block r (sometimes called the

“salt”) before feeding it to the compression function. In other words, the itera-

tion (2.1) becomes

Hi+i := h(Hi ||Mi ⊕ r) .

The other scheme also uses a random block r but it also prepends it to the mes-

sage while still performing XOR with r for all message blocks. This is equivalent

to using the first scheme on the modified message equal to 0||M where 0 denotes

a zero block. Such constructions can be proved to be target collision resistant

(TCR) and the second one satisfies even stronger notion of enhanced TCR, de-

fined in [73], under relatively weak assumptions that the compression function

satisfies a specific requirement very closely tied to the second preimage resistance.

Thanks to that, digital signature schemes that rely on the hash function being

TCR can be used safely with this modified MD construction even if the under-

lying compression function is not collision resistant but satisfies only a weaker

security property related to second preimage resistance.

HAIFA Another approach was proposed by Biham and Dunkelman [16]. They

suggest that the input to the compression function f should be augmented by

two more parameters: the number of bits hashed so far and “salt”. Thus, the

compression function in HAIFA is defined as f : {0, 1}n+m+b+s → {0, 1}n and

the iteration is modified to take the following form

Hi+1 := f(Hi ||Mi || #bits || salt) .

This construction foils multicollision and second preimage attacks but poses a

new challenge to designers of compression functions, namely how to integrate the

additional information in a secure manner. There is always a risk that adding

new parameters may introduce some new weaknesses we are not aware of at

the moment. It is interesting to note that according to the recent work [17],
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HAIFA framework can accommodate for randomised hashing as well as some

other recently proposed modes of operation.

3C constructions Finally, Gauravaram et al. [68] proposed a class of de-

signs with a more specialised security goal, aimed at strengthening the Merkle-

Damg̊ard construction against multi-block collision attacks similar to Wang’s.

They propose to use an additional state variable called accumulator chain that

is updated after each step of the compression function with data derived from

the main hash function state. Finally, at the end of the iterative process this ac-

cumulated value is fed into the last compression function (that may be different

from the one used in the main iteration). Such a construction has been adopted

in a recently designed hash function Maelstrom-0 [64].

2.7 Summary

In this chapter we outlined most important security requirements and design

principles that are relevant to the analysis of cryptographic hash functions. The

literature on the theory of hashing is vast and we did not attempt to present

a systematic treatment of this subject. Our aim was only to highlight theoret-

ical results that influence current design practices and establish basic context

in which our cryptanalytical results contained in the following chapters can be

better understood.
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3
Analysis of hash functions of the MD/SHA-1

family

The vast majority of dedicated hash functions published up to date is more or less

designed using ideas inspired by functions MD4 and MD5. Many functions like

HAVAL [164], RIPEMD [27], RIPEMD-160 [125] but also SHA-0 [65] and SHA-

1 [115] and similar designs like HAS-160 [145] or HAS-V [119] all exhibit strong

resemblance. We start this chapter with presenting all those different functions

within a single framework and stress their common properties. Then, we present

a brief survey of the history of cryptanalytical results related to MD4 and MD5,

starting from the oldest ones to the most recent improvements of seminal work

of X. Wang. After that we move to the two designs proposed as U.S. Information

Processing Standards, SHA-0 and SHA-1. After introducing the structure of both

functions we recall the first differential attack on the former function and present

our investigation into the possibility of extending this approach to SHA-1. We

present a novel characterisation of the message expansion algorithm as a linear

33
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IVn Mn

IVn+1

message expansion algorithm

iteration of the step transformation

output state

input state

input message

state feed-forward operation

Figure 3.1: Functions of the MD/SHA family have compression functions based
on the construction consisting of a message expansion algorithm, iteration of the
step transformation and state feed-forward operation.

code over F2 and study its properties. Thanks to coding theory tools we obtain

some upper bounds on weights of differential characteristics in SHA-1 and prove

lower bounds useful for short variants of SHA-1. We finish this chapter with a

review of recent rapid developments in the analysis of this function and some

proposals to counter newest attacks related to our approach.

3.1 Architecture of the MD/SHA-1 family

When comparing compression functions of aforementioned hash functions it is

easy to observe that all of them have the basic structure presented in Fig. 3.1.

The three fundamental parts are the iteration of the step transformation, the

message expansion algorithm and the state feed-forward operation. There is no

information available as to why MD4/MD5 was designed that way, which in turn

influenced many later designs, but one can identify some general principles behind

such design choices.
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General structure. The basic observation is that MD/SHA compression func-

tions can be seen as a generalization of the Davies-Meyer hashing mode [126] in

which a block cipher is replaced by sequence of transformation steps and the

XOR addition is replaced by the modular addition in the feed forward.

The classical construction with XORs yields a secure collision-resistant func-

tion as long as the underlying block cipher is secure [23] so it seems to be a

reasonable decision to design the hash function using this mode. Of course the

security proof is only a reduction, to get a secure hash function one needs a secure

block cipher.

All underlying block ciphers that are used in MD-like constructions are based

on the iteration of a bijective transformation of the input state that is parame-

trized by a single word of the expanded message. The general structure of step

transformation is presented in Fig. 3.2. Such a construction can be seen as an

extension of the well-known classical Feistel structure and according to [138] it

can be classified as a source-heavy Unbalanced Feistel Network.

The main advantage of such an extension is the possibility of tailoring the

structure of the cipher to the most common computing platform, i.e. personal

computers equipped with 32-bit processors. When a single block size is set to

32-bits, the whole extended Feistel network can be realised very efficiently be-

cause it mainly deals with whole 32-bit words of data and such instructions are

particularly efficient. When the function f is a bit-wise Boolean function (as is

the case in all MD-like designs), we obtain a particularly efficient structure.

Since in source-heavy Feistel networks propagation properties are rather weak

as just a single word of the state is affected after one step, to obtain thorough

mixing a large number of such steps is required. This is why underlying ciphers of

functions like MD5 or SHA use 64 or 80 rounds, much more than in conventional

ciphers that employ rounds with much better avalanche properties. However, this

larger number of rounds is still outweighed by an exeptional speed of the step

transformation and in the end, those designs are very fast.

Message expansion algorithms. The message expansion process (that could

be called “key-scheduling” in the context of block ciphers) is very simple in all

the MD-like constructions. Most of the functions use just a collection of carefully
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selected permutations of message words. For example, MD5 in its 64 steps uses

identity permutation σ1 = id for the first 16 steps 0, . . . , 15, σ2 : k 7→ (5 · k +

1) mod 16 as the second one used in steps 16, . . . , 31, σ3 : k 7→ (3 ·i+5) mod 16 as

the third one and σ4 : k 7→ 7·i mod 16 as the last one used in steps 48, . . . , 63. The

importance of selecting the right permutation may be illustrated on the example

of RIPEMD. While the first version was shown to have some weaknesses [58], the

improved design, where much attention has been paid to the selection of message

permutations [125], has not been successfully attacked.

A little more sophisticated approach was presented by the designers of SHA-0

who employed a linear recurrence relation (that could be seen also as a word-

based linear feedback shift register) that produces a new word of the expanded

message based on the last 16 words produced previously. SHA-1 introduced

another variation of this theme with slight modification that rotates the newly

obtained word by one bit. This of course is costlier than the simple permutation

of words and some other designers tried to settle for the middle ground: HAS-

160 [145] and HAS-V [119] mix 16 permuted input words with 4 extra words

being linear combinations of some of the input words to obtained 20 words used

in 20 consecutive steps of the compression function.

Attacks on underlying block ciphers When the compression function is

stripped of its Davies-Meyer mode of operation, what is left is essentially a clas-

sical block cipher.

Such a cipher was proposed explicitly by H. Handschuh and D. Naccache and

called SHACAL. It is based on SHA-1 and submitted to the NESSIE competi-

tion [74]. The design received a detailed security analysis [75]. This created a

considerable interest in analysis of such block ciphers. The first results came two

years later when E. Biham et al. presented the rectangle attack on 49-round re-

duced version of SHACAL-1 [18] and M. Saarinen considered related-key attacks

on block ciphers derived from functions MD5 and SHA-1 [134]. Over the years

SHACAL-1 received considerable attention with studies focusing on related key

attacks [90, 98, 62, 19]. Interestingly, there are no indications that results of

analysis of underlying block ciphers facilitated analysis of collision-resistance of

SHA-1. On the contrary, the first result for the full SHACAL-1 [62] describes the
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f

Mi

Figure 3.2: Step transformations of all MD-like functions are based on source-
heavy Unbalanced Feistel Networks

related-key scenario and uses results of cryptanalysis of the hash function SHA-1

discovered by Wang et al..

Other results showed non-randomness of the cipher based on HAVAL [158]

and on MD4 and MD5 [89].

3.2 History of attacks on MD4, MD5 and relatives

The first member of the MD family was MD4 [130]. Just a year after its publica-

tion in 1990, an attack on the last two out of three rounds (i.e. last 32 out of 48

steps) has been presented [24]. This motivated R. Rivest to present the improved

version, called MD5 [131]. Later, Vaudenay showed that the first two rounds of

MD4 are not collision-resistant and it is possible to get near-collisions for the full

MD4 [150].

The first attack on MD5 came in 1993 [25]. Den Boer and Bosselaers showed

that it is possible to find pseudo-collisons for the compression function of MD5,

i.e. they showed a way of finding two different values of the IV and a common

message M such that MD5compress(IV,M) = MD5compress(IV ′,M). This

did not threaten the usual applications of MD5, since in normal situations one

cannot control inputs of chaining variables. However, a recent result by Con-

tini and Yin showed that such differential paths have applications in attacks on

HMAC and NMAC constructions where the compression function keyed by the

IV values should be a PRF family [39].
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A major step forward in the analysis of MD-based designs was made by

H. Dobbertin who around 1996 developed a general method of attacking designs

similar to MD4. His method aims at finding collisions and is based on describing

the function as a system of complicated, non-linear equations that represent the

function. The core of this approach is a method of deriving specific constraints on

the values of variables that make the big and diffucult system of equations possi-

ble to solve. With his method he succesfully attacked MD4 showing that one can

find collisions using computational effort of around 220 hash evaluations [55, 59]

and was able to show that the two first rounds of MD4 are not one-way [60]. He

also exhibited weaknesses in RIPEMD [58] and showed collisions for the com-

pression function of MD5 with a chosen IV [56, 57]. An extensive treatment of

his method, particularly in the context of MD5 analysis can be found in the PhD

thesis of M. Daum [46].

Dobbertin’s method was also applied to the analysis of HAVAL [164]. Some

initial results were obtained by Kasselman and Penzhorn [87] who showed colli-

sions for the last two rounds of three-pass HAVAL, Park et al. [120] who analysed

first two and last two rounds and by Her and Sakurai with their analysis of the

first and third round [79]. Finally, B. van Rompay et al. presented cryptanalysis

of the full 3-pass version [148, 147].

A completely new chapter in the history of analysis of MD-like designs was

opened in August 2004 when X. Wang et al. announced a novel, more efficient and

flexible method of finding collisions in such designs [152]. Her rump session pre-

sentation during CRYPTO’04 in which she claimed it is possible to find collisions

in MD4 by hand [153] was welcomed with a round of applause. The details were

subsequently presented in two papers, one focusing on MD5 [155] and the other

dealing with MD4 and RIPEMD [151]. Wang’s method is essentially a differen-

tial attack in which both kinds of differences, XOR and modular, are taken into

account and considered simultaneously. This is essentially equivalent to keeping

track of signed binary differences (when one not only considers a change in the

bit, but also the direction of the change, either 0 → 1 or 1 → 0). This gives

more information on the state of the difference and allows for more control over

the propagation of differences through the function. Another important element
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was a method of finding messages satisfying so-called sufficient conditions that

ensure correct propagation of differences. The non-obvious part of the attack

is finding the appropriate differential path and some independent research has

been dedicated to that problem [136, 46]. Since 2004, Wang’s method has been

studied intensively (with [77] being one of the most extensive treatments) and

many enhancements have been proposed to both attack on MD4 [114, 136] and

MD5 [91, 92, 93, 140, 21]. Latest results are so efficient that computing a pair

of colliding messages for MD4 is no more difficult that evaluating the function

itself [135]. It has been also shown how to find second preimages for MD4 with

computational effort of around 227 MD4 [160]. Wang’s method was also used to

attack longer versions of HAVAL with 4 and 5 passes [161].

Since Wang’s attacks allow for finding collisions not only for the compression

function of MD5 but for the whole hash function with the predefined IV (in fact,

it is possible to find collisions for any given IV), such collisions have significant

real-life impact. Lucks and Daum showed that it is possible to craft two postscript

files that display completely different text while having the same MD5 digest [101]

and Gebhardt et al. generalised this method to other formats [69]. Lenstra and

de Weger showed how to construct two different X.509 certificates that contain

identical signatures [96] and recently, they improved that result with Stevens

to two X.509 certificates with different Distinguished Name fields that have

identical signatures [141].

3.3 Finding good differential patterns for SHA-1

The first version of the Secure Hash Algorithm (SHA) was presented by NIST in

1993 [65]. Two years later, the function was slightly modified and an updated ver-

sion of the standard was issued [115]. Although no details were made public, the

claim was that the improvment removed a technical weakness in the algorithm,

most likely discovered by cryptanalysts from NSA.

Indeed, in 1998 F. Chabaud and A. Joux presented a differential attack on

the initially proposed function, SHA-0, that can be used to find collisions with

complexity of 261 hash evaluations [33]. This attack was later implemented and

refined allowing for finding an actual collision [83, 95]. Since SHA-0 and SHA-1
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are different by a small (but significant) change in the message expansion algo-

rithms, it is quite natural question to ask whether it is possible to extend the

original attack of Joux and Chabaud to the improved design of SHA-1. Due to

the same round structure, the same technique used to attack SHA-0 could be

applied to launch an attack on SHA-1 provided that there exists a good enough

differential pattern. In this section we present results of our investigation into

the existence of such patterns in SHA-1. Most of the contents is based on our

paper [104].

3.3.1 Description of compression functions of SHA-0 and SHA-1

The compression functions of both SHA-0 [65] and SHA-1 [116] hash 512-bit input

messages to 160-bit digests. First, 512 bits of the message are divided into 16

32-bit words W0, W1, . . . ,W15. The rest of 80 words is generated out of the first

16 words using message expansion algorithms which constitute the only difference

between both designs. In SHA-0, expanded words are generated according to the

following recursive formula

Wi = Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16 for 16 ≤ i ≤ 79 , (3.1)

while SHA-1 uses the formula

Wi = ROL1(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) for 16 ≤ i ≤ 79 , (3.2)

where ROLk(X) denotes a rotation of the word X by k positions left. This

process is illustrated in Fig. 3.3.

If this is the first application of the compression function, five 32-bit registers

A, B, C, D, E are initialized to values A0 = 0x67452301, B0 = 0xefcdab89,

C0 = 0x98badcfe, D0 = 0x10325476, E0 = 0xc3d2e1f0 accordingly.

Next, the algorithm applies 80 steps (i = 0, . . . , 79). Each step is of the
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Figure 3.3: Message expansion algorithm of SHA-1 produces 80 words of the
expanded message out of 16 initial message words. SHA-0 uses the same structure
but without the final rotation left (ROL) of the new word.
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Figure 3.4: The step transformation of functions SHA-0 and SHA-1.

following form:

Ai+1 = ROL5(Ai) ⊞ fi(Bi, Ci,Di) ⊞ Ei ⊞ Wi ⊞ Ki , (3.3)

Bi+1 = Ai ,

Ci+1 = ROL30(Bi) ,

Di+1 = Ci ,

Ei+1 = Di ,

where ⊞ denotes addition modulo 232 and Ai, Bi, Ci, Di and Ei denote the values

of the registers after i-th iteration. This transformation is presented in Fig. 3.4.

Functions fi and constants Ki used in each iteration are given in Table 3.1.

Finally, the output of the compression function is the concatenation of bits

of A0 ⊞ A80, B0 ⊞ B80, C0 ⊞ C80, D0 ⊞ D80 and E0 ⊞ E80.
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Table 3.1: Functions and constants used in SHA-0 and SHA-1.

step number i fi(B, C, D) Ki

0 – 19 (B ∧ C)⊕ (¬B ∧D) 0x5a827999

20 – 39 B ⊕ C ⊕D 0x6ed9eba1

40 – 59 (B ∧C) ∨ (B ∧D) ∨ (C ∧D) 0x8f1bbcdc

60 – 79 B ⊕ C ⊕D 0xca62c1d6

3.3.2 Differential Attack of Chabaud and Joux

Chabaud and Joux presented in [33] a differential attack on SHA-0. The funda-

mental observation they made is that a change in the j–th bit of the word Wi

can be corrected by complementary changes in the following bits:

◦ bit (j + 6) mod 32 of Wi+1,

◦ bit j of word Wi+2,

◦ bit (j + 30) mod 32 of Wi+3,

◦ bit (j + 30) mod 32 of Wi+4,

◦ bit (j + 30) mod 32 of Wi+5,

provided that functions fi+1, . . . , fi+4 and modular additions ⊞ behave like

linear functions, that is, a single change of the input to f results in a change of

the output of f , a change in two inputs of f leaves the result unchanged and

differences propagate through additions without carries. They showed that a one

bit disturbance can be corrected by such a pattern with probability between 2−2

and 2−5 depending on functions fi, . . . , fi+4, if the disturbance is introduced in

the second bit (j = 1).

If a disturbance is introduced in the position j 6= 1, then there is an additional

factor of 2−3 caused by 50% chance of inducing a carry in additions in steps i+3,

i + 4, i + 5.

The attack is possible due to the property of the message expansion function

which does not mix bits in different positions. Thanks to that it was possible

to consider the message expansion algorithm as a bit-wise one. Enumeration of

all 216 possible bit patterns in the position 1 allowed for choosing a disturbance
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Figure 3.5: Propagation of one bit difference in SHA-1 message expansion.

i = 0 i = 16 i = 32 i = 48 i = 64 i = 79

pattern in the first bit position that led to a global differential pattern δ producing

a collision with probability 2−61.

Remark. It is possible to improve the attack of Joux and Chabaud by re-

ducing probabilistic behaviour of some initial corrections using a better strategy

of selecting messages rather than picking random ones. Biham and Chen pro-

posed in [13] the method of so-called neutral bits. They showed that having a

message that behaves correctly for at least 16 first steps after adding a difference

δ, it is possible to construct a big set of pairs (M,M ⊕ δ) that have much bet-

ter probability of a successful correction than the pairs produced from random

messages.

3.3.3 Analysis of the message expansion algorithm of SHA-1

An additional rotation in the message expansion formula (3.2) makes finding cor-

rective patterns used in [33] impossible, because now differences propagate to

other positions. For SHA-1, a one-bit difference in one of the 16 initial blocks

propagates itself to at least 107 bits of the expanded message W . This is illus-

trated in Fig. 3.5. However, we were able to find a difference pattern with only

44 bit changes in the expanded message. This suggests that it is interesting to

investigate the message expansion algorithm of SHA-1 in a greater detail and

check to what extent the differential attack can be applied also to SHA-1.

The important property of the message expansion process given by the for-

mula (3.2) is that it is a bijective function producing 16 new words out of 16 old

ones. This implies that it is possible to reconstruct the whole expanded message

given any 16 consecutive words of it, in particular the first 16. Moreover, if we
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Figure 3.6: Illustration of the matrix of the linear transformation A induced by
the message expansion process of SHA-1. The matrix has dimensions 512 × 512
and each tiny box corresponds to a bit equal to 1 while the rest are zeros.

consider it on a bit level as a function A : F
512 → F

512, it is easy to see that A is

F2-linear as the only operations used are word rotations (which are permutations

of bits) and bitwise XOR operations. Transformation A can be represented as a

binary matrix of dimensions 512×512, depicted in Fig. 3.6. The expansion of the

initial message m ∈ F
512 (we consider m to be a column vector) can be expressed

as a long vector

E1(m) =















m

A(m)

A2(m)

A3(m)

A4(m)















∈ F
2560 . (3.4)
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The set of correction masks is built from a disturbance pattern by rotations

and delaying the pattern by 1, 2, . . . , 5 words in the same way as described in [33].

In order to find disturbance patterns which can give rise to correction patterns

one has to look for bit patterns b ∈ F
2560 that satisfy the following conditions:

C1. the pattern b has to be of the form (3.4), i.e. b is the result of the expansion

operation,

C2. the pattern b ends with 5 · 32 = 160 zero bits (the last five words are zero),

because each disturbance is corrected in the next 5 steps, so no disturbance

may occur after the word 74,

C3. after delaying a pattern by up to 5 words (that is, shifting bits of b down

(right) by 5 · 32 = 160 positions) the shifted pattern must also be the result

of the expansion of its first 512 bits, that is

[0 . . . 0
︸ ︷︷ ︸

160 bits

b0 b1 . . . b2399]
T = E1([0 . . . 0 b0 . . . b351]

T ) .

C4. b has both the minimal Hamming weight and the maximal number of non-

zero bits in position 1.

Basic Construction

Conditions C1 – C3 imply that in fact we are looking for longer bit sequences of

85 words such that the first 5 words are zero, the next 11 words are chosen in

such a way that while the rest of the words are the result of the expansion of the

first 16, the last 5 words are zero again. After denoting the first 5 zero words

with indices −5, . . . ,−1, in positions 0, . . . , 79 we get a disturbance pattern which

allows for a construction of the corrective pattern.

Using the matrix notation, we are looking for a vector m ∈ F
512 such that

A4m has 160 trailing zero bits and also A−1m has 160 trailing zeros. As the

transformation A is a bijection, this is equivalent to finding a vector

v = [v0, v1, . . . , v351, 0, . . . , 0]
T ∈ F

512 ,
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such that the last 160 bits of A−5(v) contain only zeros, what can be written as
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x1

...

x351
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0
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a0,0 . . . . . . . . . a0,511
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...

a352,0 . . . a352,351

...
. . .

...
...

a511,0 . . . a511,351 . . . a511,511
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v0

v1

...

v351

0
...

0





















, (3.5)

where A−5 = ( ai,j ) 0≤i,j≤511.

This condition means that truncated vectors v̄ = [v0, v1, . . . , v351]
T ∈ F

352

have to belong to the null-space of the matrix Ω of the form

Ω =








a352,0 . . . a352,351

...
. . .

...

a511,0 . . . a511,351








, (3.6)

created as a copy of the lower left part of the matrix A−5. It means that the set

of all vectors satisfying properties 1– 2 is a linear subspace of F
2560 with elements

of the form

c = [ A−4(v)T || A−3(v)T || A−2(v)T || A−1(v)T || vT ] , (3.7)

where v = [ v̄T || 0 . . . 0 ]T ∈ F
512 and v̄ ∈ Ker(Ω).

The set of all such vectors c is in fact a linear code C of length n = 2560 and,

as we have verified that the rank of the matrix Ω is equal to 192, of dimension

k = 192.

To maximize the probability of a successful correction by the differential pat-

tern, it is necessary to search for the words of minimal Hamming weight and,

if possible, for those words with the maximal number of non-zero bits in the

position 1.

This is essentially a problem of finding the minimum distance of a linear code,

which is known to be NP-hard [149], so there is no easy way of finding optimal
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corrective patterns. However, there are a number of probabilistic methods [97, 31]

that allow for efficient finding of low-weight codewords in big linear codes.

The second part of the condition C4 can be partially achieved using the fact

that the expansion process is invariant with respect to the word rotation. The

result of the expansion of 16 input words already rotated by a number of bits is

the same as the rotation of the result of the expansion of 16 words performed

without rotation. Thanks to that, having a pattern of minimal weight it is easy

to transform it to a pattern with the maximal number of ones in the position 1

using the word-wise rotation by an appropriate number of positions. Of course,

in general this is the problem of finding codewords with the minimal weighted

weight, however, our experiments show that this simplified approach gives very

good results.

Reduced variants

The generalization of the construction presented above can be applied to find

good differential patterns for reduced versions of SHA-1.

Assume that we want to find a differential pattern for SHA-1 reduced to

16 < s ≤ 80 steps (3.3). Condition C1 implies that the vector A−1(m) has to

have 160 trailing zero bits. If we denote the last 160 rows of the matrix A−1 as

A−1[352 :: 511] then this condition can be written as

0 = A−1[352 :: 511] ·m . (3.8)

To formulate a simple description of constraints inferred from condition C2,

it is convenient to note that the whole message expansion process can be seen as

a linear transform E1 : F
512 → F

2560 represented by the matrix of the form

E1 =















I512

A

A2

A3

A4















,
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where I512 is the identity matrix and A is the linear transform described in

Section 3.3.3. Now, if we want to find a differential pattern for s steps, 5 words

of the expanded message in positions s − 4, s − 3, . . . , s have to be zero. In

the matrix notation, 160 entries in the vector E1 ·m have to be zero, precisely

these in positions (s − 4) · 32, . . . , s · 32 + 31. If we denote the matrix created

by selecting rows of the matrix E1 with indices 32(s − 4), . . . , 32s + 31 by

E1[32(s − 4) :: 32s + 31], then condition C2 can be written as:

0 = E1[32(s − 4) :: 32s + 31] ·m . (3.9)

Putting together Equations (3.8) and (3.9) we obtain the final result. A message

m ∈ F
512 gives rise to the corrective pattern if and only if m ∈ Ker(Ψs), where

Ψs =




A−1[352 :: 511]

E1[32(s − 4) :: 32s + 31]



 (3.10)

is a matrix of dimensions 320×512 built by placing rows of E1[32(s−4) :: 32s+31]

below rows of A−1[352 :: 511].

3.3.4 Search for best patterns

We have shown that the problem of finding disturbance patterns with minimal

weights can be seen as a problem of finding minimal weight codewords in a linear

code. To find them, we use a simplified version of the algorithm by Leon [97]

presented in [32]. We use the parameter p = 3 to search for all combinations

of up to three rows and for each code we apply at least 100 repetitions of the

procedure. The results are presented in Table 3.2.

For each variant of SHA-1 (of length 32 - 85) the second column contains the

minimal weight of the pattern found. The results marked with (*) are better than

those obtained by Biham and Chen [14]. The patterns we investigate are suitable

for attacking only last steps of SHA-1. As the first 20 steps of SHA-1 employ the

IF Boolean function, the first 16 words of a disturbance pattern cannot have ones

in the same bit position in the two consecutive words. Thus for variants longer

than 64, we give only lower bounds on the weight of patterns satisfying the IF
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Table 3.2: Hamming weights of the best patterns found. The first column contains
the number of steps s of a variant. The second column wt contains total Hamming
weights of patterns, wt20+ – weights of patterns with ignored 20 first steps, column
wtn shows total weights of incomplete patterns for near-collisions (patterns ending
with only 4 zero blocks).

s wt wt20+ wtn s wt wt20+ wtn s wt wt20+ wtn

32 9 2 9 50 35 14 35 68 > 122 > 78 > 90
33 9 2 9 51 35 15 35 69 > 127 > 81 > 127
34 9 2 9 52 35 16 35 70 > 142 > 80 > 124

35 28 4 24 53 35 16 35 71 > 157 > 94 > 142
36 24 5 24 54 78 36 75 72 > 172 > 93 > 139
37 25 5 25 55 80 39* 73 73 > 139 > 111 > 139
38 30 8 30 56 79 41 72 74 > 139 > 98 > 139
39 39 8* 35 57 72 42 72 75 > 142 > 90 > 142
40 41 11 38 58 73 42 55 76 > 187 > 111 > 187
41 41 12 41 59 91 51 66 77 > 184 > 108 > 184
42 41 13 34 60 66 44 66 78 > 198 > 115 > 177
43 41 17 41 61 66 44 66 79 > 220 > 115 > 220
44 50 15 42 62 66 45 66 80 > 172 > 106 > 172
45 45 15 45 63 107 64 87 81 > 255 > 117
46 56 23 42 64 > 101 > 60 > 96 82 > 242 > 142
47 56 24* 35 65 > 113 > 66 > 98 83 > 215 > 163
48 35 14 35 66 > 98 > 58 > 98 84 > 161 > 101
49 35 14 35 67 > 127 > 69 > 122 85 > 340 > 177

condition.

We decided to compute a lower bound because the algorithm we used ensures

that there is no codeword of a lower weight with a very high probability. This

result is unlikely to be extended in a straightforward way to the case of search

for restricted patterns satisfying the IF condition. A way out is finding the lower

bound on weights of restricted patterns using unrestricted ones.

According to Biham and Chen [14], it is possible to eliminate the probabilistic

behaviour of up to 20 first rounds. Thus the third column (denoted by wt20+)

contains minimal weights of patterns where weights of the first 20 steps are not

counted.

We are also interested in patterns that do not allow for finding the full col-

lisions but still are suitable for finding near-collisions as this may possibly lead

to an easier way of finding multi-block collisions. To obtain them we relax the

condition that requires that the last five words must contain zeros only and we

allow for non-zero entries in one more block. Weights of the best patterns found

this way are listed in the column wtn.
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Table 3.3: A full length difference of weight 44 for unrestricted message expansion
of SHA-1

0x00000002 0x00000001 0x00000000 0x00000000 0x00000008

0x00000002 0x00000000 0x00000000 0x00000000 0x00000020

0x00000000 0x00000002 0x00000002 0x00000000 0x00000000

0x00000000 0x00000002 0x00000000 0x00000000 0x00000000

0x00000001 0x00000001 0x00000002 0x00000000 0x00000040

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x80000002 0x00000000 0x00000002 0x00000000 0x00000028

0x00000002 0x00000002 0x00000000 0x00000000 0x00000080

0x80000002 0x00000003 0x00000002 0x00000004 0x00000018

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000002 0x00000002 0x00000000 0x00000000 0x00000100

0x00000000 0x00000002 0x00000000 0x00000008 0x00000020

0x00000003 0x00000000 0x00000000 0x00000000 0x000000a0

0x00000000 0x00000000 0x00000000 0x00000000 0x00000200

0x00000002 0x00000002 0x00000000 0x00000010 0x00000020

0x00000002 0x00000000 0x00000000 0x00000000 0x00000000

Table 3.4: The best differential pattern for the first 34 steps of SHA-1

W[ 0]= 0x00000002 W[16]= 0x00000000 W[32]= 0x00000000

W[ 1]= 0x00000000 W[17]= 0x00000000 W[33]= 0x00000000

W[ 2]= 0x00000002 W[18]= 0x00000000

W[ 3]= 0x00000000 W[19]= 0x00000000

W[ 4]= 0x00000002 W[20]= 0x00000002

W[ 5]= 0x00000000 W[21]= 0x00000000

W[ 6]= 0x00000003 W[22]= 0x00000002

W[ 7]= 0x00000000 W[23]= 0x00000000

W[ 8]= 0x00000000 W[24]= 0x00000000

W[ 9]= 0x00000002 W[25]= 0x00000000

W[10]= 0x00000000 W[26]= 0x00000000

W[11]= 0x00000000 W[27]= 0x00000000

W[12]= 0x00000000 W[28]= 0x00000000

W[13]= 0x00000000 W[29]= 0x00000000

W[14]= 0x00000002 W[30]= 0x00000000

W[15]= 0x00000000 W[31]= 0x00000000

It is interesting to see that the minimal weights we are able to find are growing

in quite an irregular fashion. In fact, after a rapid jump after reaching 35 steps

and a steady growth up till the step 47, there is an unexpected downfall to the

weight 35 in the step 48. The same pattern, presented in Fig. 3.5, is suitable

for attacks up to 53 steps. After 53 steps, weights get much higher and as we

consider patterns without restrictions imposed by the IF function in the first 20

steps of SHA-1, the best pattern for the full SHA-1 will most likely have weight

considerably higher than 172.

However, when we relax all the conditions and look only for patterns that

result from the expansion process, we are able to find differences with the weight

only 44 for the full length message expansion. Such a difference is presented

in Table 3.3.
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Table 3.5: The best differential pattern for the last 53 steps of SHA-1

W[32]=0x00000002 W[48]=0x80000000 W[64]=0x00000002

W[33]=0x80000000 W[49]=0x00000002 W[65]=0x00000000

W[34]=0x40000003 W[50]=0x80000001 W[66]=0x00000001

W[35]=0x00000000 W[51]=0x00000000 W[67]=0x00000000

W[36]=0x00000001 W[52]=0x00000002 W[68]=0x00000000

W[37]=0x80000002 W[53]=0x00000002 W[69]=0x00000002

W[38]=0x80000000 W[54]=0x00000000 W[70]=0x00000000

W[39]=0x00000002 W[55]=0x00000000 W[71]=0x00000000

W[40]=0x00000001 W[56]=0x00000002 W[72]=0x00000002

W[41]=0x00000000 W[57]=0x00000000 W[73]=0x00000000

W[42]=0x80000002 W[58]=0x00000003 W[74]=0x00000000

W[27]=0x00000000 W[43]=0x00000002 W[59]=0x00000000 W[75]=0x00000000

W[28]=0x00000000 W[44]=0x80000002 W[60]=0x00000002 W[76]=0x00000000

W[29]=0x00000000 W[45]=0x00000000 W[61]=0x00000002 W[77]=0x00000000

W[30]=0x40000000 W[46]=0x80000001 W[62]=0x00000002 W[78]=0x00000000

W[31]=0x00000000 W[47]=0x00000000 W[63]=0x00000000 W[79]=0x00000000

i = 0 i = 16 i = 32 i = 48 i = 64 i = 79

Figure 3.7: Inverse propagation of one bit difference applied in the last segment
of SHA-1

3.3.5 Bounds on minimal weights of short patterns

Let us discuss some bounds on minimal weights of corrective patterns. Consider

the inverse of the transformation (3.2). It can be written as

Wi = Wi+2 ⊕Wi+8 ⊕Wi+13 ⊕ROR1(Wi+16), 0 ≤ i < 64 , (3.11)

where the last 16 words W64,. . . ,W79 are set arbitrarily.

Although this formula describes essentially the same transformation, if we

consider the fact that the rotation is now applied to only one variable distant

by 16 steps, the difference propagation of the expansion process described by

Equation (3.11) is much worse than the original function. In fact, the difference

of one bit in one of the last 16 words generates up to 4 changes positioned 55 to

82 bits, what is illustrated in Fig. 3.7. It is interesting to note that this peculiar

behaviour does not depend on the number of positions by which a word is rotated

in the algorithm but is rather inherent to the structure of recurrence relations

similar to (3.2).
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To estimate the minimal number of ones in the expansion process we divide the

set of ones in two groups: these in the same position as the initial bit and those in

different positions. The size of the first group can be easily found experimentally,

as there are only 216 of all bit sequences generated by the following relation

wi =







mi for 0 ≤ i < 16,

wi+2 ⊕ wi+8 ⊕ wi+13, for i ≥ 16

and much less of them with the first five and the last five elements equal to zero.

Minimal weights of such sequences of different lengths are presented in Table 3.6.

Note that to estimate the number of ones for a differential pattern of length s,

the minimal weight of a sequence of length s + 5 has to be considered with 5

leading and 5 trailing zero bits.

Table 3.6: Minimal weights of sequences of length s + 5 with 5 leading and 5
trailing zeros generated by the formula wi = wi+2 ⊕ wi+8 ⊕ wi+13

s 32–34 35–38 39,40 41 42,43 44–47
min. wt 8 9 11 13 11 14

s 48,49 50 51 52,53 54–56 57–64
min. wt 16 17 16 17 18 19

s 65–67 68–71 72 73–75 76,77 78–85
min. wt 23 22 26 24 29 30

The size of the other group of bits cannot be easily estimated. We only can

say that it contains at least one element for sequences longer than 16. This makes

our estimation work only for variants that are not too long.

As an example, we can consider the differential pattern for 34 steps. The first

set for sequences of length 34 contains at least 8 non-zero bits. The second set

must contain at least one bit. Thus, we have shown that the pattern presented

in Table 3.4 is the optimal one for that length. This is the same pattern used by

Biham and Chen to find collisions for 34 steps of SHA-1 [14].
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3.4 Update on SHA-1 attacks

The last two years were extremely fruitful in research and results dedicated to

hash functions SHA-0 and SHA-1. In this section we attempt to briefly present

results in this area that advance the analysis of SHA designs even further.

3.4.1 In the search for SHA-1 collisions

An analysis similar to ours was performed independently by Rijmen and Os-

wald [129], they also showed that it is possible to find collisions for SHA-1 reduced

to up to 53 steps faster than by birthday paradox. Soon after this, Biham et al.

presented an improved search algorithm [15] that finds collisions in SHA-0 using

251 effort, just enough to make it practical and exhibit a colliding pair of mes-

sages. They used so-called multi-block differentials, i.e. differential paths that

spread through more than just a single instance of the compression function.

This allowed for relaxing some conditions at the beginning and at the end of

the differential path in each block and decreased the overall complexity of the

attack making it practical. However, in a few months the team of X. Wang again

surprised the cryptographic community presenting much more efficient attack on

SHA-0 [156] and the first theoretical attack on the full SHA-1 [154], both utilis-

ing Wang’s techniques of modular differentials and message modifications. The

crucial difference between previous attempts at SHA-1 and the attack by Wang

was a difference in handling the first 20 steps of the function. Instead of fol-

lowing the classical disturbance-corrections strategy that had severe limitations

when used in the first round due to paricular behaviour of the Boolean func-

tion IF, they opted for a novel approach: finding an irregular differential path

through the first 20 steps that matches (or “flows into”) the differential path

with the lowest possible complexity in the remaining steps. Finding that first

part of the differential was again possible thanks to the more flexible method of

controlling differentials by the means of both XOR and modular differences. The

second part of the differential, used for steps 20-79 was in fact the lowest weight

disturbance-corrections differential presented in Table 3.3, also discovered inde-

pendently by Rijmen and Oswald [129]. However, to achieve full collisions faster

than 280 Wang et al. used this technique within multi-block scenario. Combining
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those two approaches yields a theoretical attack with total complexity of 269,

later improved to 263.

Again, this result stimulated a lot of research to better understand Wang’s

attack and improve the method to bring the complexity of the collision search

within the reach of current computing technology. Pramstaller et al. studied

the approach that could be seen as extension of [104, 129] where not only the

message expansion algorithm, but the whole function is linearised over F2 and

good differential paths are modeled as low-weight codewords in big linear codes.

Mendel et al. give a clear summary of Wang’s attack in [109] and present a

more careful evaluation of the complexity of the attack based on more detailed

estimation of probabilities of sufficient conditions.

Wang’s approach was also used to attack reduced variants of HAS-160 [162,

35, 106].

Similarly to the case of attacks on MD5, also here one of the most important

and interesting questions is how to look for those irregular characteristics that

induce the minimal number of approximating conditions and thus have the min-

imal complexity. Hawkes et al. analysed a method of obtaining such differentials

in the first 20 steps of SHA-1 [76]. The problem of finding suitable differentials

was considered by Sugita et al. [143]. A recent, significant and beautiful result in

this area is due to Ch. De Canniére and Ch. Rechberger [50]. They presented a

rigorous analysis of ideas behind Wang et al.’s attacks on SHA-1 and described

a general framework for dealing with differential characteristics in SHA-1. They

generalised the idea of signed differences even further, to the point where charac-

teristics are basically pairs of expanded messages and register states. This allows

for tracking all kinds of differences, in particular those non-linear, irregular ones

that are a crucial ingredient of attacks on SHA-1. Having such a rigorous model

they developed a method of estimating expected work factor necessary to find a

pair of messages that follows given characteristic and this enabled them to derive

an automated search algorithm that basically keeps adding conditions in the right

order that restrict initially undefined characteristic to obtain a fully determined

characteristic that has a reasonable corresponding work factor. Thanks to that

approach and many other tricks optimising the whole process, they were able to
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get collisions for 64 steps of SHA-1 with work factor of around 235 compression

function calls, recently improved to 70 steps with complexity 243 [49]. Another

attempt at automated search for differential paths was recently presented by

Yajima et al. [157].

3.4.2 Is everything broken?

Not all the work stimulated by Wang’s attacks was concerned with cryptanaly-

sis. Some researchers tried to devise ways of countering such attacks within the

existing framework of MD-like functions.

Soon after Wang’s attacks were published, there was a rather ad hoc proposal

to modify the structure of SHA-0 to prevent those kinds of attacks [34]. How-

ever, all such structural modifications have the disadvantage of requiring new

implementations wherever hash functions are used.

Another direction was so-called message pre-processing proposed by Szydlo

and Yin [144], suitable for both MD5 and SHA-1. They observed that to success-

fully attack those functions, an attacker has to have enough freedom to manipu-

late messages to obtain the desired characteristic in the first 16 steps and ensure

that it will be satisfied in the rest of the function. A simple trick of reducing

available message space by fixing the last few words of each message block to

zero reduces this freedom dramatically and makes the search for characteristics

much more difficult. Since there is no direct control over the propagation of dif-

ferences through these few steps with fixed message words, differences can mix

more thoroughly and it is harder to predict their behaviour at the end of that

band. Such a solution is of course temporary but has the big practical advantage

of not requiring any modifications to existing MD5 and SHA-1 implementations

widely deployed in commercial environments.

An interesting approach, aimed at strenghtening SHA-1 by only slight modi-

fications of the existing structure, was proposed by Jutla and Patthak [85]. They

focused on the fact that the set of expanded message words is in fact correspod-

ning to a linear code, just as described in Section 3.3.3, and that the complexity

of the attack heavily depends on the weight of the characteristics realising the

disturbance-corrections strategy in steps 20–79. This is true also for more ad-
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vanced versions of Wang’s attack. They asked a question whether by small mod-

ifications to the message expansion formula (3.2) it is possible to obtain a code

with much higher minimum distance and provably significantly higher weight

of words restricted to step 20–79. They proved that the code described by the

following recursive fomula

Wi =







Yi ⊕ROL (Wi−1 ⊕Wi−2 ⊕Wi−15) for 16 ≤ i < 36,

Yi ⊕ROL (Wi−1 ⊕Wi−2 ⊕Wi−15 ⊕Wi−20) for 36 ≤ i ≤ 79,

(3.12)

where Yi = Wi−3⊕Wi−8⊕Wi−14⊕Wi−16 is the message expansion formula used

in SHA-0, gives a code with minimum distance 82 and the minimum weight of

the code restricted to steps 20–79 is also 82.

Using similar methods they also proved that the minimum distance of the

SHA-1 message expansion code is indeed 44, thus closing the gap between the

lower bound and the upped bound obtained previously by experiments [104, 129].

3.5 Summary

Dedicated hash functions of the MD/SHA-1 family ruled the world of practically

used cryptographic hash functions for more than 20 years. Despite their relative

simplicity, it took many years to develop attacks that are powerful enough to

threaten practical applications of such functions.

In this chapter, we studied the extension of the differential attack on SHA-

0 to SHA-1. We showed the existence of very low weight differentials in the

message expansion algorithm of SHA-1 and used them to develop attacks on

reduced variants of SHA-1. Our attacks do not extend to the full function but

the same message difference we found was also used by Wang et al. to attack the

full function.

Novel ideas of Wang et al. contributed a lot to our understanding of designs

based on source-heavy UFNs and opened new avenues of analysing them. It looks

like the ability to influence the value of the new word of the state in each step

combined with rather weak (in terms of differential behaviour) message expansion
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algorithms is the fundamental weakness of designs of that family that can be

exploited that way or another.

Right now it seems that trust in such designs has eroded and no new hash

function based on design principles of MD would be considered secure unless

having some kind of proof of security. Are there any other approaches to designing

secure hash functions that are as suitable for high-speed implementations on

modern CPUs is an interesting question many are asking right now.
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4
Security analysis of the SHA-2 architecture

In August 2002 the National Institue of Standards and Technology announced

a new standard FIPS 180-2 [116] that introduced three new cryptographic hash

functions, namely SHA-256, SHA-384 and SHA-512. In 2004 the specification

was updated with one more hash, SHA-224. All these algorithms are very closely

related (in fact SHA-224 is just SHA-256 with truncated hash and SHA-384 is a

truncated version of SHA-512) and are called the SHA-2 family of hashes. The

design of SHA-512 is very similar to SHA-256, but it uses 64-bit words and some

parameters are different to accomodate for this change. Clearly, the fundamental

design of this family is SHA-256 and all the other algorithms are variations of

that one, so the question of the security of SHA-256 is an extremely interesting

one. The latest attacks on other dedicated hash functions, and on SHA-1 in

particular, only added weight to that problem.

Comparing to other dedicated hashes, SHA-256 is a much more complex al-

gorithm and its security analysis seems to be a formidable task. Obtaining some

partial results for reduced or simplified variants of an algorithm is always a good

59
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first step and we attempted it with SHA-256. This chapter contains results of

our investigation into two different simplified variants of SHA-256. After giving

the description of SHA-256 we show how to find collisions for a variant with

some elements removed. In the second part we present a method of finding colli-

sions for short versions of SHA-256 with all modular additions replaced by XOR

operations.

4.1 Description of SHA-256

SHA-256 [116] is an iterated hash function based on the Merkle-Damg̊ard design

that uses a compression function mapping 256+512 bits (256 bits of the state and

512 bits of the message) to 256 bits of the new state. To achieve this, the function

updates the state of eight 32-bit chaining variables A, . . . , H according to the

values of 16 32-bit words M0, . . . , M15 of the message. The compression function

consists of 64 identical steps presented in Fig. 4.1. The step transformation

employs bitwise Boolean functions

MAJ(A,B,C) = (A ∧B) ∨ (A ∧ C) ∨ (B ∧ C) ,

IF(E,F,G) = (E ∧ F ) ∨ (¬E ∧G)

and two diffusion functions

Σ0(x) = ROTR2(x)⊕ROTR13(x)⊕ROTR22(x) ,

Σ1(x) = ROTR6(x)⊕ROTR11(x)⊕ROTR25(x)

built from word rotations to the right (ROTR) and bitwise XORs denoted by ⊕.

The i-th step, i = 0, . . . , 63, uses a fixed constant Ki and the i-th word Wi of the

expanded message. Constants Ki are defined as the first thirty-two bits of the

fractional parts of the cube roots of the first sixty four prime numbers.

The message expansion works as follows. An input message is split into 512-

bit message blocks (after padding). A single message block will be denoted either

as a row vector m ∈ Z
512
2 or as a vector M of 16 32-bit words Mt ∈ Z232 , with

0 ≤ i < 16. During the message expansion, this input is expanded into a vector
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Σ0

MAJ

Σ1

IF

Ki

Wi

Ai Bi Ci Di Ei Fi Gi Hi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1

Figure 4.1: One step of the SHA-256 compression function updates the state of
eight chaining variables A, . . . , H using one word Wi of the expanded message.

of 64 32-bit words Wi ∈ Z232 , which may also be seen as the 2048-bit expanded

message row-vector w. The words Wi are generated from the initial message M

according to the following formula:

Wi =







Mi for 0 ≤ i < 16 ,

σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 for 16 ≤ i < N .

(4.1)

This procedure is illustrated in Fig. 4.2. If we set N = 64, we get standard

SHA-256, taking a different value of N results in a reduced (or extended) variant

of it. The functions σ0 and σ1 are defined as

σ0(x) = ROTR7(x)⊕ROTR18(x)⊕ SHR3(x) ,

σ1(x) = ROTR17(x)⊕ROTR19(x)⊕ SHR10(x) ,

where ROTR means rotation of bits of the word to the right and SHR denotes

shift to the right.

4.2 Attack on a simplified variant of SHA-256

In this section we present an attack on a simplified version of SHA-256 without

functions σ0, σ1, Σ1, Σ1. Firstly, we derive collisions for a fully linearised version

and then we show how to extend them to a model with original Boolean functions
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σ1σ0

W0 W15W16 W63

M0 M15

Figure 4.2: The message expansion algorithm of SHA-256 produces 64 words W0,
. . . , W63 of the expanded message out of 16 initial message words M0, . . . , M15

loaded into registers W0, . . . , W15.

in place. The contents of this section is based on the paper [105].

4.2.1 Collisions for a linearised model

We start with investigating an ADD-linear variant of SHA-256, where diffusion

boxes are replaced with the identity function,

σ0 = σ1 = Σ0 = Σ1 = id , (4.2)

and Boolean functions are replaced by the addition modulo 232,

MAJ(x, y, z) = IF(x, y, z) = x + y + z . (4.3)

This means that the message expansion process has now a simpler, linear form

Wi =







Mi for 0 ≤ i < 16 ,

Wi−2 + Wi−7 + Wi−15 + Wi−16 for 16 ≤ i < N .

(4.4)

In fact, the whole function consists only of operations linear with respect to the

modular addition. If we introduce a difference ∆i = W ′
i − Wi, we can cancel

this disturbance by introducing in the next 8 steps i + 1, . . . , i + 8 the following

sequence of corrections

−4∆i, 2∆i, 2∆i, 4∆i, 2∆i, ∆i, 0, −∆i . (4.5)
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Table 4.1: Correcting a single disturbance ∆i introduced in step i in an ADD-
linearised version of SHA-256

step s ∆As ∆Bs ∆Cs ∆Ds ∆Es ∆Fs ∆Gs ∆Hs ∆Ws

i 0 0 0 0 0 0 0 0 ∆i

i + 1 ∆i 0 0 0 ∆i 0 0 0 −4∆i

i + 2 0 ∆i 0 0 −2∆i ∆i 0 0 2∆i

i + 3 0 0 ∆i 0 −∆i −2∆i ∆i 0 2∆i

i + 4 0 0 0 ∆i −∆i −∆i −2∆i ∆i 4∆i

i + 5 0 0 0 0 ∆i −∆i −∆i −2∆i 2∆i

i + 6 0 0 0 0 0 ∆i −∆i −∆i ∆i

i + 7 0 0 0 0 0 0 ∆i −∆i 0
i + 8 0 0 0 0 0 0 0 ∆i −∆i

i + 9 0 0 0 0 0 0 0 0

The whole process of correcting a single disturbance is presented in Table 4.1. In

the first 4 steps we use corrections that keep differences from influencing register

A and later from step i + 4 we successively cancel differences in the register H.

The next step is to find a disturbance pattern ∆ that follows the expansion

process and can give raise to a corrective pattern. We will use an argument similar

to the one used for finding disturbance patterns for SHA-1 [104, 129, 122]. Let

us introduce the necessary notation first. For any vector s = [s0, . . . , sl], let us

denote by Delaya(s) a vector constructed by preceding elements of s by a zero

elements, i.e.

Delaya(s) = [0, . . . , 0
︸ ︷︷ ︸

a times

, s0, . . . , sl]

and by Delaya
n(s) the same vector truncated to only n first elements, i.e.

Delaya
n(s) = [0, . . . , 0

︸ ︷︷ ︸

a times

, s0, . . . , sn−1−a] .

Based on this notation, we can state the following simple fact which will be used

later on.

Lemma 4.1 Let W ∈ Z
64
232 . If Delaya(W ) is a result of the expansion using the

recursive formula (4.4) with N = 64+a, all the vectors Delayb
64(W ) for 0 ≤ b ≤ a

are also results of the expansion process (4.4).

Proof. Each vector Delayb
64(W ) consists of elements of the vector Delaya(W )

with indices a− b, a− b + 1, . . . , a− b + 63 and as a part of a sequence following
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the recurrence relation, also follows the relation. �

The message expansion can be seen as an ADD-linear transformation E :

Z
16
232 → Z

64
232 . This means that E can be written as a 64× 16 matrix

E =











I16

A

A2

A3











, (4.6)

where I16 stands for the identity matrix and A denotes a matrix of the linear

transformation producing 16 new words out of 16 old ones according to the re-

currence relation (4.4).

The following theorem fully characterises disturbance patterns for an ADD-

linear version of SHA-256.

Theorem 4.2 Let ∆M = M ′ −M be a message difference. The expanded dif-

ference ∆ = E(∆M ) is a valid disturbance vector for an ADD–linear variant of

SHA-256 if the following conditions are satisfied

0 = A3[8 :: 16] ·∆M , (4.7)

0 = A−1[8 :: 16] ·∆M , (4.8)

where M [a :: b] means a matrix consisting of rows of the matrix M from the a-th

row to the b-th row inclusive.

Proof. The fundamental observation is that each single word ∆i of the distur-

bance vector has to be corrected by adding to the next 8 words the following

differences defined by Equation (4.5),

−4∆i, 2∆i, 2∆i, 4∆i, 2∆i, ∆i, 0, −∆i .

This shows that the last non-zero disturbance word may appear in position

55, because we need eight steps 56, . . . , 63 to correct it. Thus, the last 8 words

of the expanded difference E ·∆M have to be zero. Since E is defined by (4.6),

this condition can be written as (4.7).
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Now, let us consider the following linear combination of ∆ and its delayed

versions

C = ∆− 4Delay1
64(∆) + 2Delay2

64(∆) + 2Delay3
64(∆)

+ 4Delay4
64(∆) + 2Delay5

64(∆) + Delay6
64(∆)−Delay8

64(∆) . (4.9)

It is easy to see that each disturbance word ∆i in C is corrected by its appropriate

multiplicities appearing in the next eight positions and coming from the delayed

vectors. Since the message expansion is linear, C is the result of the expansion

if and only if all the delayed and truncated vectors Delayb
64(∆), 0 ≤ b ≤ 8 are

results of the expansion process. Lemma 4.1 assures that it is true if Delay8(∆) =

[0, 0, 0, 0, 0, 0, 0, 0,∆0 , . . . ,∆63]
T is the result of the (extended, N = 68) expansion

process. We can achieve this by taking the first 16 words and expanding them

forward according to Equation (4.4), but also by taking any 16 consecutive words

and expanding partly forward and partly backward. In our case we select elements

8–23 for the expansion. If we index elements of Delay8(∆) starting from −8 and

split the vector into two parts: one having negative and the other one having non-

negative indices, we can express this requirement equivalently by the following

two conditions:

[·, ·, ·, ·, ·, ·, ·, ·, 0, 0, 0, 0, 0, 0, 0, 0]T = A−1 ·∆M and ∆ = E ·∆M .

Only the first condition, namely that A−1∆M has to end with 8 zeros, has to

be satisfied, since ∆ is already the result of an expansion. This condition can

be written simply as (4.8) what completes the proof. As long as Equations (4.7)

and (4.8) are satisfied, ∆ is a valid disturbance pattern and C is a complete

differential characteristic corresponding to it. �

After obtaining explicit forms of the matrices A3 and A−1 (this is possible

since A is a bijection) we solve the system of equations given by (4.7–4.8) over
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Z232 and get the following result:

∆M = [0x10000000, 0xa0000000, 0xc0000000, 0xa0000000,

0xe0000000, 0x20000000, 0x40000000, 0x40000000,

0x80000000, 0xd0000000, 0x10000000, 0x60000000,

0x50000000, 0x40000000, 0x70000000, 0x30000000]T .

(4.10)

This shows that the solution space is just one-dimensional. Any multiple of ∆M

is also a solution, but since all components of the vector (4.10) have only up to

four most significant binary digits different from zero (so they are all of the form

ai · 228 (mod 232) where ai ∈ {0, . . . , 15}, 0 ≤ i < 16), there are only 16 distinct

disturbance patterns. Using any of them results in a collision for ADD-linearised

SHA-256.

4.2.2 Incorporating Boolean functions

Now let us consider a variant of SHA-256 still without functions σ0, σ1, but

with both Boolean functions MAJ and IF in place. If we multiply the basic

pattern (4.10) by 8 (so shift it left by 3 bit positions), we get a disturbance

pattern ∆∗ = E(8∆M ) that has non-zero bits at the most significant bits only.

The most significant bits of ∆∗ are as follows

1000000001101011 1011100110100110

0000011100101111 1011100000000000 .
(4.11)

∆∗ is a disturbance pattern that not only follows the message expansion but

also allows us to treat it as a binary pattern with a relatively low weight of 27.

We can approximate both Boolean functions with probability at least 1/2

assuming that the function produces an output difference each time the input

difference is non-zero. This approximation is shown in Table 4.2.

If we use this approximation and trace how a single bit disturbance ∆∗
i intro-

duced in step i propagates through the next 8 steps, we get the following sequence

of corrections:

0, 0, ∆i, ∆i, 0, 0, 0, ∆i , (4.12)
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which we need in steps i + 1, . . . , i + 8 in order to cancel the initial disturbance

∆i. The whole process is very similar to the one used to obtain the sequence of

corrections (as given in (4.5)).

A complete differential is obtained in the same way as in the previous case,

by adding delayed disturbance patterns multiplied by corresponding coefficients

of Equation (4.12), i.e. {0,0,1,1,0,0,0,1}.

This time however, correction process is probabilistic as each active Boolean

function almost always (except for input differences (0, 1, 1) for IF and (1, 1, 1)

for MAJ) introduces a factor of 1/2. A detailed analysis of these probabilities is

presented in Table 4.3. After multiplication of all factors, we obtain a probability

for a successful correction equal to 2−84. Further optimisation are also possible

as we can choose messages in such a way that conditions for successful correction

will be always satisfied for the first 16 rounds, what increases the probability to

around 2−64.

This analysis shows that the use of diffusion boxes σ0, σ1 and Σ0, Σ1 is

essential for the security of SHA-256 and also demonstrates that mixing only

modular additions with Boolean functions is not enough for constructing a secure

hash function.

4.2.3 The Role of diffusion functions

We have shown that the functions Σ0 and Σ1 constitute the essential part of

the hash function and fulfil two tasks: they add bit diffusion and destroy the

Table 4.2: Probabilities of non-zero output differences for the Boolean functions
Ch and Maj

input difference Ch function Maj function

(δx, δy, δz) conditions prob conditions prob

(1,0,0) y + z = 1 1/2 y + z = 1 1/2

(0,1,0) x = 1 1/2 x + z = 1 1/2

(0,0,1) x = 0 1/2 x + y = 1 1/2

(1,1,0) x + y + z = 0 1/2 x + y = 0 1/2

(1,0,1) x + y = 0 1/2 x + z = 0 1/2

(0,1,1) – 1 y + z = 0 1/2

(1,1,1) y + z = 0 1/2 – 1
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Table 4.3: Negative exponents e of the probabilities introduced in step s by
Boolean functions MAJ and IF. Columns MAJ and IF show input differences to
Boolean functions and 2−e gives probabilities introduced by each step.

s MAJ IF e s MAJ IF e s MAJ IF e s MAJ IF e

0 000 000 0 16 110 010 2 32 011 100 2 48 111 110 1
1 100 100 2 17 111 101 1 33 001 010 2 49 111 011 0
2 010 010 2 18 011 010 2 34 000 001 1 50 011 101 2
3 001 101 2 19 101 001 2 35 000 100 1 51 101 010 2
4 000 110 1 20 110 100 2 36 000 010 1 52 110 101 2
5 000 111 1 21 111 110 1 37 000 001 1 53 111 110 1
6 000 011 0 22 011 011 1 38 100 100 2 54 011 011 1
7 000 001 1 23 001 101 2 39 110 110 2 55 001 101 2
8 000 000 0 24 100 110 2 40 111 011 0 56 000 010 1
9 000 000 0 25 110 011 1 41 011 001 2 57 000 101 1
10 100 100 2 26 011 101 2 42 001 100 2 58 000 010 1
11 110 110 2 27 101 110 2 43 100 110 2 59 000 001 1
12 011 111 2 28 010 011 1 44 010 111 2 60 000 000 0
13 101 111 2 29 001 001 2 45 101 011 1 61 000 000 0
14 010 011 1 30 100 000 1 46 110 001 2 62 000 000 0
15 101 101 2 31 110 000 1 47 111 100 1 63 000 000 0

ADD-linearity of the function.

Good diffusion properties are ensured by a branch number equal to 4 in case

of Σ0 and Σ1 and equal to three in case of functions σ0 and σ1. This means

that one-bit input difference will spread to at least three bits at the outputs

of Σ0 and Σ1 and at least two bits at the outputs of σ0 and σ1. This slightly

worse result in case of σ0, σ1 is due to the single shift used instead of a rotation

in those two functions. The reason for that is that such functions prevent the

message expansion process from being rotation invariant, because even for a XOR-

linearised version, expansion of a message with rotated words is no longer a

rotation of the expanded original message as it was the case with SHA-1.

The other crucial property is the degree of non-linearity over Z232 . There

are modular differentials for Σ0 and Σ1 that hold for one bit input difference

e with probability 2−3 (necessary for S-boxes used in steps i + 1, i + 5) and

with probability around 2−10 for input difference equal to Σ0(e) (used for Σ1 in

step i + 2). Using the approach of modular differences it is possible to obtain

a corrective pattern for the complete round structure with probability around

2−42. A better result of 2−39 was obtained by P. Hawkes et al. [78] by explicit

computation of modular differences for Σ0 and Σ1, rather than approximating

them with a constant differential.
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These two properties constitute the foundation of the security of the full

SHA-256, as in order to extend this attack and apply corrective patterns in a

straightforward way, one would need at least 37 expanded words equal to zero

(since at most three corrective patterns can be applied to have the probability of

a success larger than 2−128) and this seems unlikely.

4.3 Analysing short versions of SHA-2-XOR

In this section we consider another simplified variant of SHA-256 with all the

modular additions replaced by XOR operations. We call this design SHA-2-XOR,

following Yoshida et al. [159], who studied such a construction. They showed that

it is possible to find pseudo-collisions faster than by birthday paradox for SHA-

2-XOR with up to 34 steps using iterative differentials. Here we explore another

direction initially inspired by [122] and based on automatic finding of low weight

differentials.

4.3.1 Method of the attack

After replacing modular additions + with XOR operations ⊕, the only non-linear

parts (over F2) of SHA-2-XOR are the Boolean functions MAJ and IF. Our attack

is based on forcing those Boolean functions to behave like linear ones with respect

to propagation of differences and it consists of three main stages:

• choose linear approximations of MAJ and IF and construct an F2–linear

model of SHA-2-XOR,

• find a suitable collision-producing difference for the linearised SHA-2-XOR,

• derive a set of conditions under which the real SHA-2-XOR behaves like

the linear model with respect to difference propagation

• find a message for which all the conditions are satisfied.

In the rest of this section we will describe the details of each of those steps.
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4.3.2 Approximations of MAJ and IF

When considering a linear approximation of a Boolean function for the purpose

of this kind of attack one should consider three factors:

1. compatibility of the differential propagation of the function and its linear

approximation,

2. impact of the selected approximation on the number of conditions to be

satisfied to force the real function to behave like a linear model,

3. probability that the system of approximating conditions corresponding to

the differential is consistent,

4. the propagation of differences of the chosen linear approximation.

We explain and discuss all those aspects in detail below.

1. The most important aspect is the selection of such an approximation that is

compatible with the differential behaviour of the Boolean function in question.

Table 4.4 shows the propagation of ⊕-differences for IF and MAJ. It presents the

values of differences

∆ IF = IF(x′, y′, z′)⊕ IF(x, y, z) and

∆ MAJ = MAJ(x′, y′, z′)⊕MAJ(x, y, z),

where x′ = x⊕∆x, y′ = y⊕∆y and z′ = z⊕∆z. As IF and MAJ are non-linear,

their output differences depend not only on the input differences but also on the

particular values of x, y and z.

There are two crucial properties to note: for the input difference (∆x,∆y,∆z)

= (0, 1, 1) function IF yields the output difference equal to 1 unconditionally. The

same is true for the function MAJ and the input difference (1, 1, 1). For that rea-

son if we want to choose a linear approximation of IF, we need to take one with

the property that for (0, 1, 1) we have ∆f = 1. The analogous condition has to be

true for a function approximating MAJ. Let us call such linear functions differ-

entially compatible. The sets of IF and MAJ differentially compatible functions

are presented in Table 4.5.
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2. Although it is true that for each Boolean function with non-zero input dif-

ference exactly one equation involving the inputs to the Boolean function is pro-

duced, that does not mean that the total number of linearly independent equa-

tions is completely unrelated to the selected approximation of functions MAJ

and IF. This is due to the structure of the step transformation. If input differ-

ences to the function MAJ in step i are (∆x,∆y,∆z) then in the next step i + 1

they are (∆w,∆x,∆y). We can exploit that fact to some extent to choose the

approximation that reduces the total number of conditions for the differential.

If we consider all possible quadruples of input differences (∆w,∆x,∆y,∆z) and

all possible differentially compatible approximations of MAJ for two consecutive

steps, ∆MAJi(∆x,∆y,∆z) and ∆MAJi+1(∆w,∆x,∆y), we can see that for two

sequences of input differences, namely (0, 1, 1, 0) and (1, 0, 0, 1) there are combi-

nations of approximations of MAJ that yield the same approximation equation

and so, effectively, there is only one approximation equation for two steps. They

are (LMAJi
,LMAJi+1) ∈ {(x, y), (x, z), (y, y), (z, x), (z, x + y + z), (x + y +

z, x), (x+y+z, x+y+z)}. If we take ∆MAJ = ∆y or ∆MAJ = ∆x⊕∆y⊕∆z

we can use those approximations throughout the whole function.

Unfortunately for a cryptanalyst, this small optimisation is not possible for

Table 4.4: Propagation of XOR-differences for Boolean functions IF and MAJ

∆x ∆y ∆z ∆ IF ∆ MAJ

0 0 0 0 0
0 0 1 x⊕ 1 x⊕ y
0 1 0 x x⊕ z
0 1 1 1 y ⊕ z ⊕ 1
1 0 0 y ⊕ z y ⊕ z
1 0 1 x⊕ y ⊕ z x⊕ z ⊕ 1
1 1 0 x⊕ y ⊕ z ⊕ 1 x⊕ y ⊕ 1
1 1 1 y ⊕ z ⊕ 1 1

Table 4.5: Linear functions differentially compatible with IF and MAJ

Boolean function differentially compatible linear functions

IF y, z, x⊕ y, x⊕ z
MAJ x, y, z, x⊕ y ⊕ z
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the Boolean function IF.

3. The choice of the approximation have also impact on the probability that

the system of approximating equations is consistent. The detailed analysis is

presented in appendix A, here we only summarise the results. We performed ex-

periments with systems of approximating equations corresponding to randomly

generated differentials of different lengths. For each differentially compatible

linear approximation of MAJ and IF we generated at least 100000 of random dif-

ferentials of each length 10, 20, . . . , 60 and computed the fraction of consistent

systems. The results show that we have the best chance of getting a consistent

system when we use z as the approximation of IF and x⊕ y ⊕ z as the approxi-

mation of MAJ with y being only a slightly worse option for MAJ.

4. We can expect that the choice of a linear approximation may influence the

complexity of differentials. Intuitively, the worse avalanche effect of the linear

function, the less complex differentials we expect to get as there will be less

“mixing” introduced by linear approximations. From that point of view, x ⊕ y

and x ⊕ z are less attractive approximations of IF than y and z. Similarly, for

MAJ it is better to choose x, y or z rather than x⊕ y ⊕ z.

Once we decide on the linear approximations, we can replace Boolean func-

tions IF and MAJ with them. The resulting function is F2-affine and if we

consider the propagation of differences, it is F2-linear. We will call a function

with all Boolean functions IF and MAJ replaced by f(x, y, z) = z and with all

constants Ki set to zero SHA-2-XOR-Lin.

4.3.3 Finding collision-producing differentials

The next step is to find optimal collision-producing differentials for SHA-2-XOR-

Lin. Note that SHA-2-XOR-Lin can be seen as a function SXL : F
256
2 × F

512
2 →

F
256
2 linear over F2 and so it has its matrix form which is a matrix over F2 of

dimensions 768 × 256.

Now, every bit string (∆IV ,∆M ) ∈ F
256
2 × F

512
2 such that

SXL(∆IV ,∆M ) = 0
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is a pseudo-collision-producing difference for SHA-2-XOR-Lin (as well as for the

affine version with constants Ki in place). In other words, the set of all differences

resulting in a pseudo-collision is the kernel of the linear map SXL,

KP = Ker(SXL). (4.13)

As KP forms a linear subspace, it has a basis and we will denote its matrix as

B(KP ). Every difference that leads to a pseudo-collision is a certain combina-

tion of rows of the matrix B(KP ). It is easy to verify experimentally that the

dimension of KP is 512 and so the dimensions of the matrix B(KP ) are 512×768.

If we are interested in real collisions, we need to consider the function SXLM :

F
512
2 → F

256
2 which is the function SXL with ∆IV = 0,

SXLM (∆M ) = SXL(0,∆M ) ∀ ∆M ∈ F
512
2 . (4.14)

Now the set of all collision-producing differences is the kernel of the function

SXLM :

KC = Ker(SXLM ) . (4.15)

Again, it will be more convenient for us later to operate on a basis matrix of this

linear subspace, B(KC). This time it is a matrix of dimensions 256× 512.

We need to identify now what is the measure of the quality of the difference.

It is clear that we are looking for message differences that yield a small number

of different bits in chaining variables A1,. . . ,H1, . . . , AN ,. . . , HN , as each set of

non-zero input differences to a Boolean function results in a condition that has

to be satisfied later. The less conditions, the more feasible is the attack. To state

our minimisation problem more precisely, we need the following observations.

The values of the registers Ai,. . . ,Hi can be expressed as (linear) functions

Ai(xIV , xM ), . . . , Hi(xIV , xM ), i ∈ {1..N} of the input (xIV , xM ).

Our goal is to minimise the sum of Hamming weights of all the registers in
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all steps from 1 to N, i.e. the value of

Wt(kIV , kM ) =

N∑

i=1

(
wt(Ai(kIV,kM

)) + wt(Bi(kIV,kM
)) + · · ·+ wt(Hi(kIV,kM

))
)

(4.16)

over all possible values of (kIV , kM ) ∈ KP (or (0, k), where k ∈ KC , if we are

looking for collisions) as these values will give us pseudo or real collisions at the

end.

An important observation that makes our problem more feasible is that the

values of Bi+1, Ci+2, Di+3 for 1 ≤ i ≤ N − 3 are the same as the value of Ai.

The same is with the values of Fi+1, Gi+2, Hi+3 which are equal to Ei. Using

that fact we can estimate the value of the sum (4.16) by

Wt∗(kIV , kM ) = 4

N∑

i=1

(
wt(Ai(kIV,kM

)) + wt(Ei(kIV,kM
))
)

(4.17)

There is no equality between these two values in general, as the values of B, C,

D, F , G, H in the first three steps come from the initial values rather than from

the values of A and E and in the last three steps the new values of A and E are

repeated less than three times. However, (4.17) gives a good estimation of (4.16)

and for one-block collisions they are equal.

Let us introduce a function ΨP,N : F
256
2 × F

512
2 → (F32

2 × F
32
2 )N that for a bit

vector of input differences (kIV , kM ) returns a vector of differences in chaining

variables A and E in steps 1 to N. More formally,

ΨP,N(kIV , kM ) = (A1(kIV , kM ), E1(kIV , kM ), . . . , AN (kIV , kM ), EN (kIV , kM ))

for all (kIV , kM ) ∈ F
256
2 × F

512
2 . (4.18)

Since ΨP,N is an F2-linear function, we we can think of ΨP,N as a matrix of

dimensions 768× 64N . After multiplying a row vector of length 768 representing

initial state and message difference, we get a vector of length 64N containing bit

differences of the registers A and E. Now, if we multiply the matrix B(KP ) by the

matrix ΨP,N we get a matrix of dimensions 512 × 64N . Let us call this matrix

RP,N ,

RP,N = B(KP ) ·ΨP,N . (4.19)
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To minimise the value of (4.17), we need to find a linear combination of rows

of RP,N with minimal Hamming weight. This problem is precisely the problem of

finding minimum weight codewords in a linear code with the generating matrix

RP,N .

For the case of collisions, we define analogously ΨC,N : F
512
2 → (F32

2 × F
32
2 )N

such that

ΨC,N(kM ) = (A1(0, kM ), E1(0, kM ), . . . , AN (0, kM ), EN (0, kM )), kM ∈ F
512
2 .

(4.20)

The generating matrix describing the code has now the form

RC,N = B(KC) ·ΨC,N , (4.21)

and is of dimensions 256 × 64N .

Experimental results The dimensions and sizes of the codes in question

(namely RP,N and RC,N ) place them far beyond the reach of standard proba-

bilistic techniques for finding low-weight codewords. Essentially, the security of

SHA-2-XOR is based on the infeasibility of finding such low-weight differences.

There is no proof that they do not exist but only a strong experimental evidence

that at least finding them seems to be very difficult.

Our experiments were focused on quite short variants, with N = 20, N = 24,

N = 28 and N = 32, to test the usefulness of this approach. However, even

such short variants are interesting because the best result so far is the proof that

pseudo-collisions can be found with complexity 2120 for a variant with N = 34

steps [159].

A sample collision-producing characteristics for N = 24 is presented in Ta-

ble. 4.6.

Experimental results show that finding low-weight codewords in unrestricted

codes doesn’t yield satisfying results as the complexity of search increases expo-

nentially with the dimension of the code. Thus we decided to search for useful

characteristics in subcodes for which we forced some positions to be zero. The

comparison of results for a short variant of 20 steps is presented in Table 4.7.
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4.3.4 Deriving the set of conditions

Once we have a low weight differential characteristics we can proceed to derive the

set of conditions that guarantee the propagation of differences through Boolean

functions IF and MAJ according to that characteristics. That way we can signif-

icantly improve the probability that the message difference for the real function

will propagate in the expected way. If we decided to use a function f1(x, y, z) as

differential approximation of IF and f2(x, y, z) as an approximation of MAJ, we

need conditions that ensure that ∆f1 = ∆ IF and ∆f2 = ∆ MAJ. For our case

where f1 = f2 = z those conditions are listed in Table 4.8. Using the fact that

Bi,j = Ai−1,j , Ci,j = Ai−2,j and Fi,j = Ei−1,j , Gi,j = Ei−2,j we can easily rewrite

these conditions in terms of bits of A and E only.

If the differential characteristic is not very sparse we can expect the number

of equations to be considerably smaller than the weight of the differential as in

some cases two or three bits will contribute to only one condition. In practice,

for the differential presented in Table 4.6 of weight 1020, we got 451 equations in

total. For 20-step characteristics of total weight 572 we obtained 298 independent

equations.

The crucial problem is that to be able to find a pair of messages conforming

to the characteristics, two sets of equations: one involving conditions on bits

Table 4.6: Sample (dense) collision producing differential for 24 steps of SHA-2-
XOR-Lin. The total weight of this path is 1020 but the corresponding system
has 451 conditions.

s A B C D E F G H W
0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000002
01 00000002 00000000 00000000 00000000 00000002 00000000 00000000 00000000 88d00900
02 00800000 00000002 00000000 00000000 80900800 00000002 00000000 00000000 4c365267
03 06000404 00800000 00000002 00000000 06200006 80900800 00000002 00000000 3c6cf61a
04 15049000 06000404 00800000 00000002 34b4b11b 06200006 80900800 00000002 1a3d4c7e
05 18c001c4 15049000 06000404 00800000 8f418db6 34b4b11b 06200006 80900800 64aeef50
06 20230000 18c001c4 15049000 06000404 2eb4d216 8f418db6 34b4b11b 06200006 56bfb089
07 b5305ec9 20230000 18c001c4 15049000 223d0b55 2eb4d216 8f418db6 34b4b11b cd33ac2c
08 14d510bc b5305ec9 20230000 18c001c4 436b199c 223d0b55 2eb4d216 8f418db6 ab6146c0
09 09290490 14d510bc b5305ec9 20230000 e55d1780 436b199c 223d0b55 2eb4d216 c560e84c
10 a3033800 09290490 14d510bc b5305ec9 b4c82e81 e55d1780 436b199c 223d0b55 22c447b4
11 01906831 a3033800 09290490 14d510bc 4450f2d1 b4c82e81 e55d1780 436b199c d8137972
12 00000000 01906831 a3033800 09290490 5db0c6a5 4450f2d1 b4c82e81 e55d1780 6b2826ad
13 00000000 00000000 01906831 a3033800 aa2a3c90 5db0c6a5 4450f2d1 b4c82e81 34ab1181
14 00000000 00000000 00000000 01906831 a2935031 aa2a3c90 5db0c6a5 4450f2d1 90f6338f
15 00000000 00000000 00000000 00000000 01906831 a2935031 aa2a3c90 5db0c6a5 fd889118
16 00000000 00000000 00000000 00000000 00000000 01906831 a2935031 aa2a3c90 08b96ca1
17 00000000 00000000 00000000 00000000 00000000 00000000 01906831 a2935031 a3033800
18 00000000 00000000 00000000 00000000 00000000 00000000 00000000 01906831 01906831
19 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
20 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
21 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
22 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
23 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
24 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
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Table 4.7: Bounds on weights of different restricted subcodes for 20-step collisions
for SHA-2-XOR with approximations ∆MAJ = ∆y and ∆IF = ∆y.

positions forced to zero dimension lower bound upper bound
- 256 15 187

[739..1280] 128 23 141
[641..1280] 64 46 142
[513..1280] 2 194 194

[1..32] ∪ [641..1280] 32 144 144
[577..1280] 32 126 143
[617..1280] 40 89 140
[621..1280] 44 73 139
[625..1280] 48 71 143

Table 4.8: Approximating conditions for ∆z = ∆ IF and ∆z = ∆ MAJ

(∆Ai,j , ∆Bi,j , ∆Ci,j) condition for IF condition for MAJ
(∆Ei,j , ∆Fi,j , ∆Gi,j)

(0, 0, 0) - -
(0, 0, 1) Ai,j = 0 Ei,j ⊕ Fi,j = 1
(0, 1, 0) Ai,j = 0 Ei,j ⊕Gi,j = 0
(0, 1, 1) - Fi,j ⊕Gi,j = 0
(1, 0, 0) Bi,j ⊕ Ci,j = 0 Fi,j ⊕Gi,j = 1
(1, 0, 1) Ai,j ⊕Bi,j ⊕ Ci,j = 1 Ei,j ⊕Gi,j = 0
(1, 1, 0) Ai,j ⊕Bi,j ⊕ Ci,j = 1 Ei,j ⊕ Fi,j = 1
(1, 1, 1) Bi,j ⊕ Ci,j = 0 -
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Ai,j and another involving all Ei,j have to be simultaneously consistent. The

probability of obtaining such systems is considered in the next section in details.

If we have a differential for which both systems are consistent, we can try to

find a solution i.e. a message that satisfies all the approximation equations.

4.3.5 Satisfiability of systems of approximating conditions

The important question now is what is the probability that a system obtained

from a differential pattern is consistent. It is easy to see that a system of con-

straints on bits of registers Ai can be separated into 32 independent systems,

each of them consisting of variables Ai,j, i = 1..N only, i.e. variables correspond-

ing to only j-th bit of words Ai, i = 1..N . For example, for the approximation

∆IF (x, y, z) = ∆z there are only three types of equations involving registers A

and they are of the form

0 = 0 (4.22a)

xi = 0 (4.22b)

xi−2 ⊕ xi−1 = 0 (4.22c)

xi−2 ⊕ xi−1 ⊕ xi = 1 (4.22d)

for i = 1..N .

One of the smallest inconsistent systems for this approximation is presented

below

x1 = 0

... any equation ...

x1 + x2 + x3 = 1

x2 + x3 = 0

If a bigger system contains this pattern of equations anywhere, it is inconsistent.

This suggests two natural questions. The first one is what is the probability

that a system obtained from a differential pattern is consistent. The second

one asks whether the probability depends on the approximation of the Boolean
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Table 4.9: Probability that a system of conditions corresponding to a random
differential for N steps is consistent depends on the selected approximation of
the Boolean function.

Approximation of IF Approximation of MAJ
N y z x⊕ y x⊕ z x y z x⊕ y ⊕ z

10 0.905 0.918 0.907 0.847 0.621 0.912 0.622 0.934
20 0.773 0.826 0.791 0.707 0.356 0.812 0.356 0.859
30 0.661 0.738 0.686 0.587 0.208 0.717 0.208 0.790
40 0.565 0.663 0.598 0.489 0.118 0.638 0.120 0.723
50 0.483 0.598 0.520 0.407 0.068 0.565 0.068 0.664
60 0.417 0.534 0.453 0.344 0.040 0.502 0.039 0.609

function we chose.

To answer those questions, we conducted some experiments with randomly

generated systems consisting of approximating equations for all possible differen-

tially compatible linear approximations of Boolean functions MAJ and IF. The

results are summarised in Table 4.9. It should be noted that the probabilities

given in tables correspond to systems involving only one bit position of registers

A or E. If we had a random system of approximating equations the final prob-

ability would be obtained by raising the result to the power 32, as there are 32

bits in each register.

Those results may seem pessimistic as it would be practically impossible to get

a consistent system for any interesting variants of SHA-2-XOR. However, there

is a simple trick that somehow improves the situation. It is enough to generate

differentials that have bands of zeros interleaving parts with difference bits. That

way we split the system of equations into smaller, independent ones and decrease

the probability of occurrence of inconsistent patterns.

Once we have a system that is consistent, we can proceed to the last step of

the attack that tries to find a message that generates the state of the function

for which all the equations are satisfied.

4.3.6 Finding a message satisfying approximating conditions

The task of finding a message that generates the state of the hash function that

satisfies all the approximating conditions is quite difficult in general – we are

looking for a solution of a large system of quadratic equations over GF (2).
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E8,2 = E7,2 E8,13 = 1 E8,23 = 1

A8,2 = A7,2 E8,15 = 0 E8,26 = E7,26 + 1

E8,3 = 1 A8,16 = A0,16 A8,26 = A4,26

A8,4 = A4,4 E8,22 = 1 E8,28 = 1

Figure 4.3: An example of a system of approximating equations involving vari-
ables up to step 8, i.e. taken from the set E [8].

However, in the first 16 steps we have complete freedom of selecting the values

of message words and that way we can control the values of registers Ai and Ei

for i = 1, . . . , 16 to a certain extent.

The general idea of our heuristic algorithm is to incrementally make all

equations satisfied advancing step by step in the structure, correcting bits with

wrong values by flipping appropriate bits of message words while making sure

the changes do not spoil equations that are already statisfied.

Consider the set of approximating equations, let us call it E . We can partition

it into a family of sets, each one containing equations involving variables up to

step k only. If we denote such sets as E [k] we have E =
∑

k E [k]. All the equations

can be rewritten in such a way that the variable from the latest step is on the

left-hand side and all the other variables (and possibly a constant) are on the

right-hand side, as illustrated in Fig. 4.3. It is clear that if we can set the values

of variables on the left-hand side, i.e. change the values of registers A and E in

the last step, we can always satisfy such equations (provided that the system is

consistent).

Let us analyse now how we can change the values of bits of Ai and Ei by

manipulating values of Wi−1 and Wi−2. There are two propagation rules that are

useful for us.

Rule #1: Direct modification. In case of Wi−1 the rule is simple. Flipping

the bit Wi−1,b flips both Ai,b and Ei,b.

Rule #2: Indirect modification. This rule describes the impact of flipping

the bit Wi−2,b on registers Ai and Ei. Here the situtation is more complex and

is best explained by a picture presented in Fig. 4.4. Bit Wi−2,b changes bits

Ai−1 , b and Ei−1 , b. A change in Ai−1 , b propagates through Σ0 and reverses bits
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Ai , b−2 mod 32, Ai , b−13 mod 32 and Ai , b−22 mod 32. Similarly, a change in Ei−1 , b

propagates through Σ1 to simultaneously flip bits of Ai and Ei with indices

b − 6 mod 32, b − 11 mod 32 and b − 25 mod 32. Additionally, depending on

the values of Bi−1 , b, Ci−1 , b and Fi−1 , b, Gi−1 , b, the difference may propagate

through Boolean functions MAJ and IF respectively, influencing bits Ai , b and

Ei , b. More formally, if we assume that there are no differences in registers Ai−2,

Σ0

MAJ

Σ1

IF

Ki−1

Wi−1

Ai−1 Bi−1 Ci−1 Di−1 Ei−1 Fi−1 Gi−1 Hi−1

Ai Bi Ci Di Ei Fi Gi Hi

Σ0

MAJ

Σ1

IF

Ki−2

Wi−2,b

Ai−2 Bi−2 Ci−2 Di−2 Ei−2 Fi−2 Gi−2 Hi−2

b− 2
b− 13
b− 22

b− 6
b− 11
b− 25

Figure 4.4: Propagation of differences throughout two steps of SHA-2-XOR when
one bit of Wi−2 is changed.

. . . , Hi−2 we can describe the differences in Ai and Ei as follows

∆Ai =∆Wi−1 ⊕ Σ0(∆Wi−2)⊕ Σ1(∆Wi−2)⊕MAJ(∆Wi−2, Bi−1, Ci−1)

⊕ IF(∆Wi−2, Fi−1, Gi−1) ,

∆Ei =∆Wi−1 ⊕ Σ1(∆Wi−2)⊕ IF(∆Wi−2, Fi−1, Gi−1) .
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Observe that if the values of registers Bi−1, Ci−1 and Fi−1, Gi−1 are fixed, the

propagation of differences through Boolean functions is in fact described by the

fifth line of Table 4.4 since we have non-zero input difference in the first input and

zero differences on the second and third input. For a non-zero input difference in

j-th bit of Ai−1 the ouptut difference is equal to the value of Bi−1,j ⊕ Ci−1,j in

case of MAJ and Fi−1 , j ⊕Gi−1 , j in case of IF. This means that we can model

both MAJ and IF as linear functions, parametrised by fixed values of the other

registers. In turns, it follows that the whole function Flip : F
32
2 ×F

32
2 → F

32
2 ×F

32
2

that takes differences in words Wi−2 and Wi−1 and returns differences in registers

Ai and Ei is in fact linear over F2. It means that for any desired pattern of output

differences (i.e. specific changes to bits of Ai and Ei) we can easily check if there

exist input differences (i.e. differences in Wi−2 and Wi−1) that yield this output

difference and we can find sets of such inputs efficiently.

This constitutes the foundation of our algorithm: we want to change some

bits of registers Ai and Ei that take part in equations from E [i] not yet satisfied

while keeping differences equal to zero for those bit positions that are present in

already satisfied equations. That way, if only the solution exists, we can find it

and correct all the equations in the step at the same time.

There is one more important thing to note. When going from step i−1 to step

i we do not want to spoil equations from E [i− 1] involving bits of Ai−1 and Ei−1.

Some of the bits of these registers have to remain unchanged and thus we cannot

use all possible bits of Wi−2 because that could spoil some earlier equations. Also,

if we have an equation of the form Ai,b = Ai−1,b and, because of the behaviour

of MAJ and IF, flipping the bit of Wi−2,b would flip both bits Ai−1 , b and Ai , b

we have to mark the bit Ai−1 , b as fixed to either force the change of Ai , b by

using other bits of Wi−2 if the equation is not satisfied or preserve the value of

the register if the equation is satisfied.

Let us describe now how the algorithm advances one step, going from the

state where all equations are satisfied up to step i− 1 to the next state where all

equations up to step i are satisfied.

We assume that all equations from the set
∑i−1

k=0 E [k] are satisfied and that

all bits in registers A, E up to step i − 2 are fixed, i.e. we do not change them
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and there are no differences there. Also, as we mentioned before, some of the

bits of registers Ai−1 and Ei−1 that appear in approximating equations for step

i− 1 are also fixed and we cannot modify them. Let us denote the set of indices

of bits of A fixed in step k by FixedAk. Similarly, we use the notation FixedEk

for the set of indices of bits of register Ek that are fixed. The algorithm proceeds

as follows.

• Looking at the left-hand sides of equations from set E [i − 1] determine

which bits of Ai−1, Ei−1 have to be fixed and compute sets FixedAi−1 and

FixedEi−1.

• Assign random values to bits of Wi−1 that do not correspond to fixed po-

sitions in registers Ai−1 and Ei−1, i.e. bits with indices in {0, . . . , 31} \
(FixedAi−1 ∪ FixedEi−1).

• Determine the linear transformation Flip and its matrix.

• Looking at the set E [i] find those equations that inolve bits at the same

position in step i − 1 and i (e.g. equations like Ai,k = Ai−1,k or Ei,k =

Ei−1,k + Ei−2,k + 1). If the function Flip modifies both bit positions, add

indices corresponding to those bits to FixedAi−1 and FixedEi−1.

• Create matrix Flip′ by selecting columns of Flip with indices that do not

correspond to fixed bits of Ai−1 and Ei−1. We assume that bits of Ai−1

correspond to columns 0, . . . , 31 and bits of Ei−1 correspond to columns

32, . . . , 63.

• Create matrix Q by picking only those rows of the matrix Flip′ that corre-

spond to bits of Ai and Ei that appear in left-hand sides of equations from

E [i]. Matrix Q describes now how by flipping only allowed bits of Wi−2 we

can change the values of bits that appear in target variables of equations

of step i.

• Create a vector y of length |E [i]| that contains zeros in positions corre-

sponding to equations from E [i] that are satisfied and ones in positions

corresponding to equations that need to be corrected.
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• Look for a solution x of the matrix equation

y = Q · x . (4.23)

If a solution x exists, recreate the corresponding values of ∆Wi−2, apply

the correction to the word Wi−2 and return success. If there is no solution,

return failure.

This method of satisfying equations in a single step can be used to obtain a

simple algorithm that works for all 1, . . . , 16. We start with step 1. For equations

from E [0] and E [1] we may need to correct some bits of the initial state, since

there are no corresponding message words that can be used by our method to

modify registers A0, E0 and A1, E1. Starting from step 2, we use the algorithm

described above. If the algorithm successfully goes through all steps, we are done.

If it fails in a step, one of the possible solutions is to go back one step and hope

that a fresh pseudorandom value of Wi−2 will be sufficient to pass the step next

time. Unfortunately, this method is only a heuristics as it is not guaranteed to

terminate. This poses a significant problem for dense characteristics that require

a lot of conditions to be satisfied.

We can estimate however, when we can hope for a solution. Clearly, to get a

solution of the system (4.23) with high probability, the number of rows should be

smaller than the number of columns of Q. This means that the number of bits

we want to fix in step i should be less than the number of free bits remaining in

step i− 1, a simple necessary condition that allows to asses quickly the potential

of a differential path. Of course, the chance of getting a solution depends also on

the form of the matrix Flip but it seems difficult to derive concrete conditions

here.

4.3.7 Discussion and related results

In this section we explored a possible method of obtaining collisions for reduced

variants of SHA-2-XOR. Even though it seems to be an interesting line of re-

search, so far it has some serious limitations that have to be overcome to make it

more practical. The first problem is finding linear characteristics that are of suffi-
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ciently low weight. In general, the smaller the weight, the better the probability.

Unfortunately, as we have already mentioned, this problem is NP-hard and we

can only hope to push boundaries of what is feasible in practice. Considering

that the attack on a full function would require codes of length around 4096 and

dimensions a few hundreds, one cannot expect to find characteristics of very low

weights. Still, computational advances in the area of coding theory may extend

the potential of this attack. Note that it is enough to find a characteristics only

once, and growing popularity and power of distributed and grid computing may

be a tool to achieve this.

However, what in fact really influences the probability is the number of equa-

tions that have to be satisfied. Table 4.6 shows that for dense characteristics

there is a substantial difference between the weight of the characteristics and the

number of approximating conditions that have to be satisfied. This direction

could be investigated further.

Another issue is the problem of finding messages that satisfy the system of

conditions derived from the chosen approximation of Boolean functions past the

first 16 steps. It seems that the main obstacle is that there is no simple way of

progressively satisfying equations after step 16 since changes that are required to

fix new equations may spoil conditions already satisfied. It may be possible to

use the method of neutral bits [13], but different message expansion algorithm

certainly makes this more difficult.

Finally, the study of SHA-2-XOR is interesting mainly because of its close

relationship with the original design SHA-256. However, going back to the orig-

inal design by straightforward restoring modular additions while still preserving

the differential seems to be impossible because of a large number of additional

conditions that must be imposed on values of registers to force ADDs to behave

like XORs.

In spite of all the aforementioned problems, it seems that there are still many

unexplored directions related to this method and this approach may deserve more

attention.

Related results A similar analysis, focused on reduced variants of the original

function SHA-256, was performed by Mendel et al. and published in [108]. The
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two approaches have common principles, but the results of Mendel et al. seem to

be considerably better due to a few important differences. The first difference is

the choice of the approximation. In our analysis, we considered only differentially

compatible approximations but it seems that the best choice is the approximation

by the constant function. It results in characteristics with much lower densities

and this greatly simplifies the process of finding conforming messages. However,

such a choice of the approximation creates the problem that for some input

differences, the output difference is always non-zero and there is no effective

condition that can make the function behave like the approximation. Mendel et

al. managed to overcome this difficulty by using carries in modular additions

to compensate for difference bit not following the characteristics. This is not

possible when we have only bitwise XORs and it shows an interesting fact that a

design that uses XORs instead of modular additions is not always weaker.

4.4 Summary

In this chapter we presented results of our security analysis of SHA-256. This

design is significantly more complex than all the previous dedicated hash func-

tions and the results available so far focus only on some selected aspects of the

behaviour of the function. It seems however that this is always the first step to

any successful analysis and even though we should not expect an attack on the

full SHA-256 in the next few years, any advances in our understanding of this

design will be noteworthy.



5
Analysis of alternatives: FORK-256

Since source-heavy UFNs with Boolean functions seem to be susceptible to at-

tacks similar to Wang’s because only one register is changed after each step and

the attacker can manipulate it to a certain extent, one could try designing a

hash function using the other flavour of UFNs, namely target-heavy UFNs where

changes in one register influence many others. This is the case with designed

in 1995 hash function Tiger [3] (tailored for 64-bit platforms) and a recently

proposed FORK-256 [81] which is the focus of this chapter.

5.1 A brief description of FORK-256

FORK-256 is a dedicated hash function recently proposed by Hong et al. [81,

82]. It is based on the classical Merkle-Damg̊ard iterative construction with the

compression function that maps 256 bits of state and 512 bits of message to 256

bits of a new state. For the complete description we refer interested readers

to [81].

87
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Figure 5.1: Compression function of FORK-256 consists of four parallel branches
B1, . . . , B4, each one processing the set of message words Mℓ in different order.

The compression function consists of four parallel branches branchj, j =

1, 2, 3, 4, each one of them using a different permutation σj of 16 message words

Mi, i = 0, . . . , 15.

The same set of chaining variables CV = (A0, B0, C0,D0, E0, F0, G0,H0) is

input in the four branches. After computing outputs of parallel branches

hj = branchj(CVℓ,M), j = 1, . . . , 4,

the compression function updates the set of chaining variables according to the

formula

CVℓ+1 := CVℓ + [(h1 + h2)⊕ (h3 + h4)] ,

where modular and XOR additions are performed word-wise. This construction

is presented in Fig. 5.1 and can be seen as a further extension of the design

principle of two parallel lines used in RIPEMD [125].

Each branch function branchj , j = 1, 2, 3, 4 consists of eight steps.

In each step k = 1, . . . , 8 the branch function updates its own copy of eight

chaining variables using the step transformation depicted in Fig. 5.2, where R
(j)
i

denotes the value of the register R in j-th branch after step i. All A
(j)
0 , . . . ,H

(j)
0

are initialised with corresponding values of eight chaining variables.
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Figure 5.2: Step transformation of a single branch of FORK-256. Q-structures
are marked with dashed lines.

Table 5.1: Constants δ0, . . . , δ15 used in FORK-256

δ 0 1 2 3

0 428a2f98 71374491 b5c0fbcf e9b5dba5

4 3956c25b 59f111f1 923f82a4 ab1c5ed5

8 d807aa98 12835b01 243185be 550c7dc3

12 72be5d74 80deb1fe 9bdc06a7 c19bf174

Functions f and g mapping 32-bit words to 32-bit words are defined as

f(x) = x +
(
ROL7(x)⊕ROL22(x)

)
, g(x) = x⊕

(
ROL13(x) + ROL27(x)

)
.

Constants δ0, . . . , δ15 used in each step are defined as the first 32 bits of fractional

parts of binary expansions of cube roots of the first 16 primes and are presented

in Table 5.1. Finally, permutations σj of message words and permutations πj of

constants are shown in Table 5.2.

Table 5.2: Message and constant permutations used in four branches of FORK-
256

j message permutation σj permutation of constants, πj

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
4 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
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5.2 Analysis of step transformation of FORK-256

The step transformation described in the previous section can be logically split

into three parts: addition of message words, two parallel mixing structures QL

and QR and a final rotation of registers. The key role is played by the two

transformations of four words, QL and QR (marked in Fig. 5.2 with yellow boxes)

as they are the main source of diffusion in the compression function. It is clear

that if we can find interesting differential characteristics for QL and QR, we should

be able to extend them to the whole branch and maybe also the whole function.

Let us focus on QL, as QR is very similar to QL (f and g are swapped and

rotation amounts are different) and the properties we are going to discover work

for both of them.

Characteristics of the form (0,∆B,∆C,∆D)→ (0,∆B,∆C,∆D) are not that

difficult to get since in each step differences in registers B, C, D are modified

by only one modular addition and one XOR operation. Whether we consider

modular or XOR differences, there is only one incompatible operation to deal

with.

We can combine such characteristics to get a straightforward differential for

up to three steps for each branch.

The difficult part is characteristics of the form (∆A, 0, 0, 0) → (∆A, 0, 0, 0).

As far as we could see, there are two ways of finding them. The first method of

finding those desired characteristics is based on the fact that both f and g are

not bijective so we can hope that we can find such inputs x, x′ that f(x) = f(x′)

and g(x + δ) = g(x′ + δ). The second one is aimed at getting zero differences in

registers B, C, D in spite of non-zero differences at the outputs of f and g. In

next sections we describe both of them in detail.

5.3 Simultaneous collisions for f and g

For given value δ, we would like to find all x and x′ such that f(x) = f(x′) and

g(x + δ) = g(x′ + δ). A naive search would require computations of order 264,

which is well beyond our computing resources. A less naive method trades time
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for memory1. Below we describe this tradeoff in a way that requires computations

of order 232 and 232 memory for the particular functions f and g used in FORK-

256. Again, we focus on QL, i.e. f is applied before g.

Step 1: We determine which inputs x have more than one preimage. This is

done by initialising an array of 232 entries to zero, and then incrementing

entries indexed by f(x) in the array for all 232 inputs x. The entries with

their values at least 2 are output. There are about 230 of these. In fact, this

step is not necessary for our algorithm, but it may be helpful in practice

since it reduces memory requirements for the next step.

Step 2: Read in the values of f(x) from Step 1, i.e. the values that have more

than one preimage. Then, for each input value, build a linked list of all

preimages of that value. This is done in a similar way to Step 1: compute

all 232 values of f(x), and for each value that matches one of the inputs

from Step 1 (this can be checked quickly with a hash table), add it to the

corresponding linked list. The longest linked list for f has 12 preimages.

Step 3: Process the linked lists from Step 2. For each linked list, consider the

set of values x1, . . . , xk that map to the same image. See if there is any xi

and xj in that list such that g(xi + δ) = g(xj + δ), and if so, output the

pair as a solution of simultaneous collisions of f and g.

The running time of Step 3 depends upon the number of combinations of pairs

of preimages that map to the same image. According to our computations, this

is 2134351185 < 231.

There are many potential tricks to reduce the search space and/or memory

requirements further, but the above algorithm was sufficient to determine the

following four solutions for QL

x = 4b4d2a05, x′ = 6ff2f3e9, for δ1 = 71374491,

x = 06def69a, x′ = aeb691e5, for δ2 = b5c0fbcf,

x = 27a61343, x′ = 67eac4d8, for δ3 = e9b5dba5,

x = 04549cdc, x′ = 20d331a5, for δ7 = ab1c5ed5,

1The idea of this algorithm is due to Scott Contini
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Figure 5.3: A situation where a non-zero output difference of f is cancelled out by
a non-zero output difference of g is called a micro-collision. Three simultaneous
micro-collisions in QL are marked in this picture with yellow clouds.

g
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ROL21

ROL5

ROL17δπj(2k)

A B C D

A B C D

QLy

z

and two for QR

x = 445c5563, x′ = d73bc777, for δ10 = 243185be,

x = be452586, x′ = edfd4d5b, for δ14 = 9bdc06a7.

This is the complete list of solutions and so far it is hard to see how one could

use them in any attack. Clearly, we need another method of finding such step

differentials.

5.4 Micro-collisions in QL and QR

In this section we concentrate on an alternative way of finding characteristics of

the form (∆A, 0, 0, 0) → (∆A, 0, 0, 0) in QL and show that it works for QR as well.

The idea is to look for pairs of inputs to the register A and appropriate values of

registers B, C, D such that output differences in registers B, C, D are equal to

zero in spite of non-zero differences at the outputs of functions f and g. Such a

situation is possible if we have three simultaneous micro-collisions: differences in

g cancel out differences from f in all three registers B, C, D as shown in Fig. 5.3.
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5.4.1 Necessary and sufficient condition for micro-collisions

Let us denote y = f(x), y′ = f(x′) and z = g(x + δ), z′ = g(x′ + δ). We have a

micro-collision in the first line if the following equation is satisfied

(y + B)⊕ z = (y′ + B)⊕ z′ (5.1)

for given y, y′, z, z′ and some constant B. Our aim is to find the set of all constants

B for which (5.1) is satisfied.

Let us first introduce three different representations of differences between

two numbers x, x′ ∈ Z232 . We will use certain relationships between them in our

analysis.

• The first kind of representation is the usual XOR difference. We will treat it

as a vector of 32 digits representing bits of x⊕x′ and denote it ∆⊕(x, x′) ∈
{0, 1}32.

• The second one is a plain integer difference. For two numbers x, x′, we

define the integer difference ∂x simply as the result of the subtraction of

two operands, i.e. ∂x = x− x′, −232 < ∂x < 232.

• The third kind of representation we will be using is the signed binary rep-

resentation. It uses three digits, 1, 0, −1, and a pair x, x′ has signed binary

representation ∆±(x, x′) = (x0 − x′
0, x1 − x′

1, . . . , x31 − x′
31), i.e. the i-th

component is the result of the subtraction of corresponding bits of x and

x′ at position i.

A simple but important observation is that if a difference has the signed

representation (r0, r1, . . . , r31) then the corresponding XOR difference has the

form (|r0|, |r1|, . . . , |r31|), i.e. the XOR difference has ones in those places where

the signed difference has a non-zero digit, either −1 or 1.

The relationship between integer and signed binary representations is more

interesting. An integer difference ∂x corresponds to a signed binary represen-

tation (r0, . . . , r31) if ∂x =
∑31

i=0 2i · ri where ri ∈ {−1, 0, 1}. Of course this

correspondence is one-to-many because of the integer difference–preserving trans-

formations of signed representations, (∗, 0, 1, ∗) ↔ (∗, 1,−1, ∗) and (∗, 0,−1, ∗) ↔
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(∗,−1, 1, ∗), that can stretch or shrink chunks of ones. To see this better con-

sider a small example. Let us assume words of 4 bits and consider ∆±(11, 2) =

(1, 0, 0, 1), ∆±(14, 5) = (1, 0, 1,−1) and ∆±(12, 3) = (1, 1,−1,−1). All these bi-

nary signed representations correspond to the integer difference ∂x = 9. Note

that we can go from one pair of values to another by adding an appropriate con-

stant, e.g. (12, 3) = (11 + 1, 2 + 1). This addition preserves the integer difference

but can modify the signed binary representation.

After this introductory part we are equipped with the necessary tools and can

go back to our initial problem. Rewriting (5.1) as

(y + B)⊕ (y′ + B) = z ⊕ z′ . (5.2)

we can easily see that the signed difference ∆±(y + B, y′ + B) can have non-zero

digits only in those places where the XOR difference ∆⊕(z, z′) has ones. This

narrows down the set of all possible signed binary representations that can “fit”

into XOR difference of a particular form to 2hw(∆⊕(z,z′)). But since a single signed

binary representation corresponds to a unique integer difference, there are also

only 2hw(∆⊕(z,z′)) integer differences ∂y that “fit” into the given XOR difference

∆⊕(z, z′) and what is important, integer differences are preserved when adding

a constant B.

Thus, to check whether a particular difference ∂y = y − y′ may “fit” into

XOR difference we need to solve the following problem: given ∂y = y − y′,

−232 < ∂y < 232 and a set of positions I = {k0, k1, . . . , km} ⊂ {0, . . . , 31} (that

is determined by non-zero bits of ∆⊕(z, z′)), decide whether it is possible to find

a binary signed representation r = (r0, . . . , r31) corresponding to ∂y such that

∂y =
m∑

i=0

2ki · rki
where rki

∈ {−1, 1} . (5.3)

Substituting ti = (rki
+ 1)/2 we can rewrite the above equation in the equivalent

form

∂y +

m∑

i=0

2ki = 2k0+1t0 + 2k1+1t1 + · · ·+ 2km+1tm , (5.4)

where ti ∈ {0, 1}. Deciding if there are numbers ti that satisfy (5.4) is an instance
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of the knapsack problem and since it is superincreasing (because weights are

powers of two), we can do this very efficiently.

This gives us a computationally efficient necessary condition for micro-colli-

sion in a line: if ∂y = y − y′ cannot be represented as (5.3), no constant B exist

and there is no solution of (5.1).

Moreover, we can show that this is as well a sufficient condition: if we can

find a solution to the problem (5.3), then there exist a constant B that modifies

the signed difference in such a way that it “fits” the prescribed XOR pattern.

Observe that since the solution of the superincreasing knapsack problem (5.4)

is unique, so is the solution of the equivalent problem (5.3). This means that

we know the unique signed representation ∆±(u, u + ∂y) = (r0, . . . , r31) that is

compatible with the XOR difference ∆⊕(z, z′) and yields the integer difference

∂y. However, a unique signed representation corresponds to a number of concrete

pairs (u, u+∂y). If at a particular position j ∈ I we have rj = −1, we know that

in this position the value of j-th bit of u has to change from 1 to 0. Similarly, if

we have rj = 1, the j-th bit of u should change from 0 to 1. The rest of the bits

of u (corresponding to positions with zeros in ∆±(u, u + ∂y)) can be arbitrary.

That way we can easily determine the set U of all such values u. It is clear that

U always contains at least one element.

Now, since u = y+B for all u ∈ U , the set B of all constants B satisfying (5.1)

is simply B = {u− y : u ∈ U}.

This reasoning shows also that if we can have a micro-collision in a line,

there are |B| = 232−hw(z⊕z′) constants that yield the micro-collision if the most

significant bit of z⊕ z′ is zero and 232−hw(z⊕z′)+1 if the MSB of z⊕ z′ is one. The

difference is caused by the fact that if 31 ∈ I, we do not need to change u31 in

a particular way (i.e. either 1→ 0 or 0→ 1), any change is fine since we do not

introduce carries anyway.

Finally, since we didn’t use any properties of functions f and g, the same

line of argument applies not only to micro-collisions in QR but also to the same

structure with any functions in places of f and g.

Example Let us consider an example of a micro-collision happening in QL of

the first step in branch 1 shown in Fig. 5.4. For two inputs x = 0x15cce045 and
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δ0

f

g

B = x100x11xx11xx0x11x1xx0xxxxxxxxxx

δ0

f

g

B

x = 15cce045 x′ = 07a402f4

∆± = .+++-.+-+.+..+-.+.-..+..........

∆⊕ = 1111.11..11..1.11.1..1..........

∆± = +-++.--..--..+.--.-..+..........

y y′

z z′

Figure 5.4: An example of a micro-collision. Singed binary representation ∆± of
a modular difference ∂y = y − y′ is modified by adding a constant B so that it
“fits” into XOR difference ∆⊕(z, z′).

x′ = 0x07a402f4 we have y = f(x) = 0x0d0231f7, y′ = f(x′) = 0x76a495f7

and the integer difference between them is equal to ∂y = y′ − y = 1772250112.

The outputs of the function g are z = 0x94e96c55 and z′ = 0x628cc855 and

the corresponding XOR difference is

∆⊕(z, z′) = 11110110011001011010010000000000 .

We can find a micro-collision iff we can find coefficients ai ∈ {−1, 1} such that

1772250112 =
∑

i∈I

ai · 2i

where I = {31, 30, 29, 28, 26, 25, 22, 21, 18, 16, 15, 13, 10} is the set of positions

with non-zero digits of ∆⊕(z, z′). In our case it is possible since

1772250112 = 231−230+229+228−226−225−222−221+218−216−215−213+210.

It can be written more compactly as a signed binary difference

∆±(y + B, y′ + B) = +-++.--..--..+.--.-..+..........
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where sign ’+’ stands for +2i and ’-’ for −2i. Now we know that a micro-collision

is possible and want to find the set of “good” constants B that make it happen.

Looking at the signed difference above, we can see that if the bit difference is

’+’ i.e. 0 → 1 than the corresponding bit of y + B has to be 0, for ’-’ we need

transition 1→ 0 and the bit has to be equal 0. This means that we can represent

the set of all possible values y + B as

y + B = x100x11xx11xx0x11x1xx0xxxxxxxxxx

where ’x’ denotes any digit, zero or one. From this we can easily get B by

subtracting y from one of the possible choices for y + B.

5.4.2 Estimation of probabilities of micro-collisions

From a practical point of view, we are interested in the probability that a random

pair of values (A,A′) may lead to simultaneous micro-collisions and what is the

overall probability of characteristics of the form (∆A, 0, 0, 0) → (∆A, 0, 0, 0) when

we cannot manipulate the values of registers A, B, C, D.

We conducted some experiments for QL and QR with different constants δ.

Our results indicate that the probability that a random pair of inputs (A,A′)

may lead to simultaneous micro-collisions in all three lines is around 2−23 with

probability for a single line close to 2−13.

The probability that random constants B, C, D adjust the difference in f(x)

properly depends on Hamming weights of ∆⊕(z, z′). One example of such distri-

bution of weights obtained by testing 232 random pairs2 is presented in Table 5.3.

We can see a clear peak around weights 24–26, so, according to the formula de-

scribing the size of the set of constants from the previous subsection, we can

expect 26 ∼ 28 “good” constants in each of the sets B, C, D and thus the proba-

bility that a random constant falls into that set is around 2−24 ∼ 2−26. Of course

to get a result for all three branches we need to cube that number.

Using the above results, we can try to estimate the probability that a set

of three simultaneous micro-collisions occurs if we have no control of any values

2In all experiments we were using Mersenne Twister [102] as the source of pseudorandom
numbers
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Table 5.3: Distribution of Hamming weights of ∆⊕(g(x + δ0), g(x′ + δ0)) corre-
sponding to potential simultaneous micro-collisions after testing 232 random pairs
x, x′.

hw 0 1 . . . 18 19 20 21 22 23
count 1 0 . . . 0 1 6 18 29 59

hw 24 25 26 27 28 29 30 31 32
count 78 74 90 56 39 14 1 0 0

A, A′, B, C, D. Multiplying 2−23 by 2−72 ∼ 2−78 we get an estimation of

2−95 ∼ 2−101. It shows that such differentials are not immediately useful, but if

we can force specific values of registers to desired values, they may be used to

construct collisions for at least simplified variants of FORK, as presented in next

sections.

5.5 Finding high-level differential paths in FORK-256

In this section we present a general strategy of finding high-level differentials in

the structure of FORK-256 provided that we can prevent the differences from

spreading from A and E to other registers. We start with a basic intuition

and later on formalise it into the model using simple linear algebra and coding

theory tools. Later on, we show that we can generalise this model to improve the

probability of the paths by relaxing some of the initial conditions.

5.5.1 Basic intuition

If we can avoid mixing introduced by the structures QL and QR (i.e. we know how

to get differentials (∆A, 0, 0, 0) → (∆A, 0, 0, 0) and (∆E, 0, 0, 0) → (∆E, 0, 0, 0))

and we can assume that differences in the registers B,C,D and F,G,H remain

unchanged, the only places where differences can change are registers A and E,

after the addition of a message word difference. Thus, the values of registers

in steps are simple linear functions of registers of the initial vector and message

words. If we denote ∆X0 + ∆Mσj(a) by [X,a] and ∆X0 + ∆Mσj(a) + ∆Mσj(b) by

[X,a,b], where σj is the permutation of message words used in branch j = 1, 2, 3, 4,
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Table 5.4: If no mixing through QL and QR occurs, differences in registers are
combinations of differences in initial vectors and message words. [X,i] stands for
∆X0 + ∆Mσj(i) and [X,a,b] stands for ∆X0 + ∆Mσj(a) + ∆Mσj(b)

registers
step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H

1 [A,0] [B] [C] [D] [E,1] [F] [G] [H]
2 [H,2] [A,0] [B] [C] [D,3] [E,1] [F] [G]
3 [G,4] [H,2] [A,0] [B] [C,5] [D,3] [E,1] [F]
4 [F,6] [G,4] [H,2] [A,0] [B,7] [C,5] [D,3] [E,1]
5 [E,1,8] [F,6] [G,4] [H,2] [A,0,9] [B,7] [C,5] [D,3]
6 [D,3,10] [E,1,8] [F,6] [G,4] [H,2,11] [A,0,9] [B,7] [C,5]
7 [C,5,12] [D,3,10] [E,1,8] [F,6] [G,4,13] [H,2,11] [A,0,9] [B,7]
8 [B,7,14] [C,5,12] [D,3,10] [E,1,8] [F,6,15] [G,4,13] [H,2,11] [A,0,9]

out [A,0,9] [B,7,14] [C,5,12] [D,3,10] [E,1,8] [F,6,15] [G,4,13] [H,2,11]

we can write this down concisely in a tabular form presented in Table 5.4.

It is clear that differences in registers at any particular step are combina-

tions of differences introduced in the initial vector (A0, . . . ,H0) and differences

in message words M0, . . . ,M15.

5.5.2 Constructing the model

If we consider the simplest case and assume (very optimistically) that any two

differences can cancel each other (this is the case with XOR differences), we

are in fact working over F2 and differences in all registers are F2-linear combi-

nations of differences ∆A0, . . . ,∆H0 and ∆M0, . . . ,∆M15 (which are now seen

as elements of F2). Now output differences of the whole compression func-

tion (including feed-forward) are also linear combinations of differences from

S = (∆A0 . . . ,∆H0,∆M0, . . . ,∆M15) and we can represent this map as an F2-

linear function, (∆A, . . . ,∆H) = Lout(S). This means we can easily find the set

Sc of all vectors S = (∆A0 . . . ,∆H0,∆M0, . . . ,∆M15) that yield zero output dif-

ferences at the end of the function simply as the kernel of this map, Sc = ker(Lout).

To minimise the complexity of the attack, we want to find high-level paths as

short as possible. Since each register difference in each step is a linear function

of differences ∆A0 . . . ,∆H0,∆M0, . . . ,∆M15 and there are only 224 of them, the

straightforward approach is to enumerate them all and for any desirable subset

of registers (e.g. for collisions in two or three branches) count the number of

registers containing non-zero differences and pick those differences S that give
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the smallest one. This straightforward process can be improved. If we denote

by V the vector of register states we are interested in, there is a matrix Ψ such

that V = S ·Ψ. The matrix Ψ can be seen as a generator matrix of a linear code

over F2. Minimum words of that code correspond to register states with minimal

weight. To find collisions (or other restricted paths), the appropriate generating

matrix is Basis(ker Lout) · Ψ (or Basis(ker(L)) · Ψ where L is the linear map

describing those registers we want to be zero). Here Basis(A) denotes the basis

matrix of a linear space A. Using systems like MAGMA [26], finding minimum

words in such codes takes only a fraction of a second.

Our computations show that

• The minimal collision path in branches 1-2 uses differences in M0 and M9,

• The minimal collision path in branches 3-4 uses differences in M14 and M15,

• The minimal collision path for all four branches requires differences in mes-

sage words M6 and M12,

• The minimal unrestriced path for all branches has differences in the message

M12 only.

However, differences in registers other than A and E don’t contribute to

the complexity of the attack that much. The measure based on the number of

differences in registers A and E only corresponds more closely to the number of

“difficult” differentials we need to handle that require finding micro-collisions.

Considering this, we also conducted experiments for different variants of FORK-

256 counting only differences in registers A and E.

The results are presented in Table 5.5. The first column specifies whether we

are interested in collision, pseudo-collisions (differences also appear in the initial

vector) of just a free path – no specific conditions on differences are imposed.

The third column gives the minimal number of Q–structures that require special

differentials and thus also micro-collisions in registers B,C,D or F ,G,H. The last

column gives an example of message and/or chaining variables differences that

induce the high-level path with the given number of sets of micro-collisions.
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Table 5.5: Minimal numbers m of sets of simultaneous micro-collisions in QL and
QR necessary in different attack scenarios on variants of FORK-256

Scenario Branches m Differences in

Collisions 1,2 2 M0, M9

Collisions 3,4 2 M14, M15

Collisions 1,3 3 M5

Collisions 1,4 3 M2

Collisions 2,3 3 M3

Collisions 2,4 3 M9

Pseudo-collisions 1,2,3 6 B0

Pseudo-collisions 1,2,4 6 B0

Pseudo-collisions 1,3,4 6 B0

Pseudo-collisions 2,3,4 6 B0

Collisions 1,2,3,4 12 M6, M12

Free path 1,2,3,4 6 M12

5.5.3 More general variant of path finding

We can generalise this approach even further. Depending on whether we force a

micro-collision to happen in a particular line or not, we have eight different models

for each Q-structure. Using the linear model that assumes that all differences

cancel each other, we can express output differences of each QL-structure as

∆Ai+1 = ∆Ai

∆Bi+1 = ∆Bi + qB ·∆Ai

∆Ci+1 = ∆Ci + qC ·∆Ai

∆Di+1 = ∆Di + qD ·∆Ai

where qB, qC , qD ∈ F2 are fixed coefficients characterising the QL-structure. The

same is true for QR-structures. This means that we have 864 possible linear mod-

els of FORK-256 when we allow such varied micro-collisions to happen. In fact,

results presented in Table 5.5 correspond to a special case when all coefficients

q are equal to zero. Relaxing this condition and allowing for micro-collisions

in only selected lines decreases the number of active Q-structures, however, at

the expense of additional conditions required to cancel differences coming from

different parts of the structure.
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Table 5.6: Minimal numbers m of Q-structures with micro-collisions for different
scenarios of finding generalised high-level differential paths. Q-structures are
numbered from 1 to 64 where 1 corresponds to QL in the first step of branch
1 and 64 to QR in the last step od branch 4. P-C in scenario means finding
pseudo-collisions and C collisions.

Scenario Branches m Differences in active Q-structures

P-C 1,2,3,4 5 IV [7],M2,M11 12:000, 25:000, 35:001,
41:001, 51:010

C 1,2,3,4 6 M12 13:000, 31:001, 40:000,
47:100, 50:000, 57:000

P-C 1,2,3 2 IV [1],M12 8:100, 24:0
1,2,4 3 IV [7],M11 3:000, 51:010, 60:000
1,3,4 3 IV [7],M2 35:001, 44:000, 51:000
2,3,4 3 IV [3],M9 36:010, 43:000, 52:000

C 1,2,3 3 M0,M3,M9 1:001, 20:010, 39:100
1,2,4 4 M1,M2 2:001, 9:000, 25:100, 51:000
1,3,4 5 M9 10:000, 39:001, 42:001

43:010, 59:000
2,3,4 5 M3,M9 20:010, 27:000, 39:000

57:000, 59:010

Results of our search for such paths are summarised in Table 5.6. They show

that by introducing such an extended model of Q-structures we can significantly

decrease the number of necessary micro-collisions. Particularly interesting is the

result showing that, under favourable conditions, collisions can be achieved by

using a single difference in M12 with 6 micro-collision places in the path. In

section 5.7 we show how to use this situation to generate near-collisions and

theoretically also collisions.

5.6 Collisions for two branches of FORK

We can use the minimal path for branches 1 and 2 to get collisions for these

two branches of FORK-256. The idea is to find two related simultaneous micro-

collisions, the first one of type f - δ0 - g (f is followed by δ0 and then by g) to

be used in the left part of the first step of branch 1 and the other one of type

g - δ12 - f to be used in step 2 of branch 2.

If we can find a pair of values (x, x′) that yields f - δ0 - g micro-collisions and

a pair (y, y′) that yields g - δ12 - f micro-collisions such that the values satisfy the
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condition x − x′ = y′ − y, we can construct a collision for branches 1 and 2 by

preserving differences ∂x = x− x′ in steps 2, 3, 4 of branch 1 and ∂y = y − y′ in

steps 3, 4, 5 of branch 2. This view is presented in Fig. 5.5.

Branch 1 Branch 2
1 140

2 3

4 5

6 7

8 9

10 11

12 13

14 15

15

11 9

8 10

3 4

2 13

0 5

6 7

12 1

Figure 5.5: Collisions for two branches of FORK-256 can be obtained by intro-
ducing modular differences in M0 and M9 and finding two sets of micro-collisions.

The algorithm works as follows:

1. find a pair of values x, x′ that produce f - δ0 - g simultaneous micro-collisions

and determine the three compatible constants ρ1, ρ2, ρ3, (this step requires

around 223 tests of random pairs x, x′)

2. for the fixed difference ∂x = x−x′ test pairs of the form y, y′ = y+∂x until a

simultaneous micro-collision of type g - δ12 - f is found. Determine compat-

ible constants τ1, τ2, τ3. (Again, experiments suggest that the complexity

of this step is 223 tests)

3. set IV [1] := ρ1, IV [2] := ρ2, IV [3] := ρ3,

4. compute M0 := x− IV [0], M ′
0 := x′ − IV [0],

5. set both M15 and M ′
15 to τ1 − IV [4]− δ14,
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6. compute initial values IV [5] and IV [6] as follows

IV [5] := (τ2 ⊕ f(IV [4] + M15 + δ14))− g(IV [4] + M15),

IV [6] := (τ3 ⊕ROL5(f(IV [4] + M15 + δ14)))−ROL9(g(IV [4] + M15))

7. compute the values M9 := y − E
(2)
1 and M ′

9 := y′ − E
(2)
1 , where

E
(2)
1 = ((IV [3]+ROL17(f(IV [0]+M14)))⊕ROL21(g(IV [0]+M14 +δ15))),

is the value of register E after step 1 in branch 2.

8. preserve the difference ∂x by forcing the value of g to zero in steps 2, 3, 4

(XOR-ing with zero doesn’t change the modular difference)

• set M ′
2 := M2 := −A

(1)
1 − δ2,

• set M ′
4 := M4 := −A

(1)
2 − δ4,

• set M ′
6 := M6 := −A

(1)
3 − δ6,

9. similarly, preserve the difference ∂y by forcing the value of f to zero in steps

3, 4, 5 of branch 2

• set M ′
10 := M10 := −E

(2)
2 − δ10,

⋄ in step 3 we cannot modify the value of M4 as it is already fixed by

correction done in branch 1. However, we can modify freely the value

of M8 (and M ′
8) which indirectly influences the value of E

(2)
3 we need to

adjust. We do this until the difference in H
(2)
4 is equal to the difference

at the beginning of the step, i.e. in G
(2)
3 . If we exhaust all possible

values of M8, we can modify the value of M11 and go to step 9 or pick

another constant ρ1 and start over from step 3.

• set M ′
13 := M13 := −E

(2)
4 − δ6,

The complexity of the attack on branches 1 and 2 depends on the effort to find

suitable pair of micro-collisions and the amount of work necessary to find the

appropriate value of M8 in step 9.⋄. Microcollisions can be precomputed using

around 223 evaluations of functions f , g. The only part we need to deal with
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Table 5.7: Example of a pair of messages producing collisions for the first two
branches of FORK-256.

IV 6a09e667 ff03f03a f7da19f9 a19f937d 510e527f d1075199 c4bba02c 00000000

M
97770819 00000000 90e31bf1 00000000 e9b1a3b9 00000000 36ca5a85 00000000

000024a1 6ff47b82 3f7bfaf6 00000000 00000000 014b4e3b 00000000 980100ed

M ′ b479fad2 00000000 90e31bf1 00000000 e9b1a3b9 00000000 36ca5a85 00000000

000024a1 52f188c9 3f7bfaf6 00000000 00000000 014b4e3b 00000000 980100ed

during the attack is the step 9.⋄. In our experiment we had to test ≈ 10000 values

of M8 to find the right one. Since one test is roughly equivalent to computing

single step in one branch of FORK (1/32 of the whole function), we can estimate

the complexity of 9.⋄ to be less than 29 evaluations of the compression function.

This algorithm (partially) uses the following variables: IV [1], IV [2], IV [3],

IV [5], IV [6], M0, M2, M4, M6, M8, M9, M10, M13, M15. The following variables

can have arbitrary values: IV [0], IV [4], IV [7], M1, M3, M5, M7, M11, M12, M14.

Finally, we present an example of a collision in Table 5.7.

Collisions for branches 3 and 4 can be obtained using exactly the same method

by introducing appropriate differences in message words M14 and M15.

A similar approach was used independently by Mendel et al. [107] who also

discovered the existence of pathological differentials and made use of them to

produce collisions for two branches of FORK-256.

5.7 Collisions for the full compression function

In this section we show how a high-level path using differences in M12 presented in

section 5.5 can be used to find very low weight output differences of the compres-

sion function of FORK-256 and we argue that this approach might be applicable

to finding full collisions faster than using the birthday paradox.

5.7.1 Overview

The foundation of our attack is the observation that if we introduce a difference

in M12 and we are able to prevent it from propagating to other registers in step

1 and step 5 of branch 4 and in step 4 of branch 3 and it does not introduce

a difference in register E7 of branch 1 then the output difference is confined to
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registers B,C,D and E only, ie. to at most 128 bits in total. This situation is

illustrated in Figure 5.6.

Figure 5.6: High-level path used to find near-collisions in FORK-256. Thick lines
show the propagation of differences. Q-structures for which micro-collisions have
to be found are greyed out.
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We can decrease the number of affected bits further by selecting a modular

difference having differences in only a few most significant bits as the difference

in register B will be restricted to only those most significant bits as well.

Now, if we can find pairs of messages satisfying aforementioned conditions

efficiently enough and we can assume that output differences have distribution

close to uniform, we can expect to find very low weight differences and ultimately

also a collision.

The attack consist of two phases. During the first one, we find simultaneous

micro-collisions in steps 1 and 5 of branch 4 and step 4 of branch 3 for a specially

selected modular difference introduced in M12.

In the second phase we use free message words M4 and M9 that do not

interfere with already fixed micro-collisions in branches 3 and 4 to find messages
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that yield no difference in register E
(1)
7 due to a single micro-collision in line D

in step 7 of branch 1.

5.7.2 Achieving micro-collisions in branches 3 and 4

We assume that we have already chosen a suitable modular difference d. We

proceed as follows.

• We start with branch 4. We find x1 such that x1, x1 + d give simultaneous

g - δ15 - f micro-collisions for step 1 of branch 4, compute corresponding

constants τ1, τ2, τ3 and assign IV [5] := τ1, IV [6] := τ2, IV [7] := τ3. Set

M12 to x1 − IV [4] and M ′
12 to x1 − IV [4] + d.

• Fix arbitrary values of M5, M1, M8, M15, M0, M13 and M11 and compute

the first half of the branch, up to step 5. Then, in step 5 find a pair of values

x2, x2 + d∗ (where d∗ = A
(4)
4 − A

′(4)
4 is the modular difference in register

A after step 4) yielding simultaneous f - δ6 - g micro-collisions and compute

corresponding constants ρ1, ρ2, ρ3. If no such solution exists, repeat this

point, otherwise, set M3 := x2 −A
(4)
4 .

• By manipulating message words M1, M15, M13 (and also M0 and M11) we

need to adjust the values of registers B
(4)
4 , C

(4)
4 , D

(4)
4 to ρ1, ρ2, ρ3.

– Since B
(4)
4 = A

(4)
3 + M13 + δ8 and we want B

(4)
4 = ρ1, we adjust the

value of B
(4)
4 by setting M13 := ρ1 −A

(4)
3 − δ8.

– Now, starting from ρ2 we can go back one step and compute the nec-

essary value of B̄
(4)
3 = [ρ2 ⊕ g(A

(4)
3 + M13 + δ8)]− f(A

(4)
3 + M13). We

can do this by setting M15 := B̄
(4)
3 −A

(4)
2 − δ10. This change has also

influenced the value of E
(4)
3 so we have to compensate it by adjusting

the value of M11.

– Similarly, going back from ρ3 two steps we can determine the necessary

value of B
(4)
2 and adjust M1 accordingly. Again, we need to compen-

sate the induced change in E
(4)
2 by adjusting the value of M0 and the

change in E
(4)
3 by correcting M11 again.
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• Now we switch to branch 3. We choose values x3, x3 + d that cause simul-

taneous g - δ6 - f micro-collisions in step 4 and find corresponding constants

λ1, λ2, λ3. Using them we compute the necessary values of registers E–H,

ie. Ē
(3)
3 := x3 −M12, F̄

(3)
3 := λ1, Ḡ

(3)
3 := λ2, H̄

(3)
3 := λ3.

• Again, by going backwards and adjusting message words M2, then M14 and

then M6 and M10 and finally IV [1] in a similar manner to what we did in

branch 4 we obtain desired values of register at the beginning of step 4.

• Since we have just modified IV [1] we need to go back to branch 4 and

compensate for this change by adjusting the value M11 once again.3

After this procedure we have obtained a differential path in branches 3 and 4

presented in Figure 5.6. The important fact is that changing the values of mes-

sage words M4 and M9 does not change this path, so after fixing branches 3 and 4

we still have 64 bits of freedom left. Also note that there are many possible states

of branches 3 and 4 following this path as at the beginning of the process we can

select many arbitrary values, e.g. M5, M8, M7 and IV [0], IV [2], IV [4], IV [5]. Ad-

ditionally, there are many constants to choose from when fixing a micro-collision.

5.7.3 Single micro-collision in branch 1

What is left are branches 1 and 2. Fortunately, we do not need to pay attention

to branch 2 at all as M12 appears in the very last step and so in any case it

induces differences in registers B–E only.

In branch 1 we need a single micro-collision in the third line of step 7. It

seems to us that there is no better way of finding messages that cause that

micro-collision to happen than by randomly testing message words M4 and M9.

The probability of the success heavily depends on the modular difference in

use. A few best modular differences we could find are presented in Table 5.8.

Let us analyse the computational complexity of finding this single micro-

collision in terms of numbers of full FORK-256 evaluations. Denote by η the

number of allowable values for the modular difference in use. By an allowable

3Note that this description mentions modification of M11 three times. Only the last one is
necessary, but we include them all to make the process more intelligible by clear invariants.
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Table 5.8: Best modular differences d we could find and their probabilities of
inducing a single micro-collision in strand D of step 7 in branch 1. η is the
number of input values to strand A that may result in the micro-collision.

difference d η observed probability

0xdd080000 221.7 2−24.6

0x22f80000 221.7 2−24.6

value we mean an input x for which there exist constants that cause a micro-

collision to happen for the pair (x, x + d). For d =22f80000 we have η = 221.7

(cf. Table 5.8). We proceed as follows.

• First, we fix the value of M4. We will exhaust all values of M9 for this value

of M4.

• Next, step through the computation up until step 7. We need to know all

inputs into step 7.

• Then, for each allowable value into strand A of step 7 (note that M12

and M ′
12 are already fixed) we step backwards one step to determine the

corresponding “allowable outputs” to strand G in step 5 and we store them

in a hash table. For each allowable value we need to compute one XOR,

one subtraction and store the element in a hash table, so the work effort

for this step is about 1/64 · η of full FORK-256 evaluations. For η = 221.7

the complexity of this step is about 215.7.

• We loop through all 232 values of M9. For each one, we compute the output

of G only in step 5 and check if it matches something in the lookup table.

If so, we proceed forward to see if it causes the difference to disappear in

step 7. If not, we go to the next value of M9.

The cost of testing one value of M9 is less than 1/64 of a full FORK evalua-

tion. Essentially, we are computing less than a single Q-structure (FORK-

256 consists of 64 of them). We assumed here that the cost of the table

lookup is not exceeding the cost of computing the other parts of the Q-

structure that we are omitting (strands F and H), which seems to be a

fairly safe assumption. For η < 222 values that match the allowable out-
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puts we do a little bit more (about one more Q-structure in the left part of

step 6), but the dominant term is 232 · 1/64 = 226.

• After exhausting the list, we proceed with the next value of M4.

From the above analysis it follows that we process 232 values of M9 for the

work effort of about 226 full FORK evaluations. Since the observed probability

of finding a solution is about 2−24.6 (cf. Table 5.8), we are getting about 27.4

solutions for 226 effort. This is equivalent to about 218.6 FORK evaluations per

solution.

5.7.4 Finding near-collisions: experimental results

If output differences are distributed uniformly on the positions where they can

appear (i.e. part of the register B and registers C, D, E) than we can expect a

binomial distribution of their Hamming weights. After generating enough pairs

we should be able to find some with exceptionally small weights, which can be

called near-collisions.

We implemented this algorithm and performed some searches for such output

differences with low weights. Comparison of the distribution of Hamming weights

of differences obtained by the means of an experiment with theoretical binomial

distribution is presented in Figure 5.7. It seems that the experimental distribution

is indeed close to the theoretical one. However, one can see a slight bias towards

lower weights.

This phenomena can be explained by looking at Table 5.9 which contains

counts of non-zero differences appearing at all bit positions of registers B, C,

D and E. The expected number of non-zero differences for a truly random bit

stream would be 211867/2 ≈ 105933. All bits of registers C, D and E are very

close to that value, but in some bits of register B non-zero differences appear

with a little lower probability. This most likely accounts for the bias towards

smaller weights.

The best result we obtained so far has the output difference of weight 28 and

is presented in Table 5.10. It took about a day of work of an average workstation

PC to find it.
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Figure 5.7: Distribution of Hamming weights of 211867 output differences gen-
erated by the algorithm for d =0x22f80000.
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Table 5.9: Counts of non-zero bit differences in registers B, C, D and E after
testing 211867 pairs of “close” hashes.

bits counts

0 – 7 0 0 0 0 0 0 0 0
8 – 15 0 0 0 0 0 0 0 0

B 16 – 23 0 0 0 0 105812 102276 94549 82277
24 – 31 68364 105987 102715 105458 97349 89530 105799 103214

0 – 7 105460 105722 105723 105751 104016 106018 105458 105833
8 – 15 105840 104074 106047 105842 105798 104450 99927 106058

C 16 – 23 106255 106211 105918 108125 105860 105751 105785 105357
24 – 31 110069 106080 105834 105726 106008 106559 106134 105892

0 – 7 106072 105667 105443 105786 106165 106053 106019 105874
8 – 15 105949 106556 105629 105597 105709 105308 102826 105302

D 16 – 23 105637 105938 105993 104343 105727 106117 105800 105642
24 – 31 106491 105858 105933 105595 104871 105884 106314 105622

0 – 7 105496 105903 105954 105681 106193 105745 105652 105878
8 – 15 103071 105674 106294 105795 105778 105893 105728 105701

E 16 – 23 105913 105857 105977 105725 105963 106232 106061 105743
24 – 31 106115 105974 107089 105738 105904 106000 105941 105671

5.7.5 Complexity of finding full collisions

Results from the previous subsection suggest that we can consider output differ-

ences to be very close to the uniform distribution. Using d =0xdd080000, there

are 109 bits that may contain differences, but we know that differences in bit

19 of register B will always cancel out each other. This means that since at

most 108 bits are affected, after generating 2108 such pairs we expect to find a

collision. We have already computed that the complexity of finding a single pair

like this is about 218.6 (or less, if better modular differences exist). So the total
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Table 5.10: An example of an IV value and a message pair giving a pair of
FORK-256 hashes differing on 28 bits.

IV 6a09e667 db1bb914 3c6ef372 a54ff53a 510e527f 767b0824 66410f7d 90f7ce64

M
85a83e55 91d3ca9d a6c2facb 027afd32 000000cb 00000000 9d4a6aba 00000000

e649c148 4606ae35 6efb18d8 2d6ade8f 1dcb6936 ec995db1 d2ad257b 730f5bb4

M ′ 85a83e55 91d3ca9d a6c2facb 027afd32 000000cb 00000000 9d4a6aba 00000000

e649c148 4606ae35 6efb18d8 2d6ade8f 40c36936 ec995db1 d2ad257b 730f5bb4

diff 00000000 8c300000 1d010204 52520104 c0908122 00000000 00000000 00000000

complexity of generating enough pairs to find a collision with high probability is

2108 · 218.6 = 2126.6, more than a factor of two better than the generic birthday

attack.

It is worth mentioning that the additional advantage of our attack is that

it does not need a huge storage, it requires only about 2 · 222 32-bit words of

memory for storing precomputed inputs for micro-collisions and a hash table of

similar size.

The above estimate is rather conservative, because if we multiply probabilities

of single bit differences being zero (which can be easily derived from Table 5.9)

we get the value of 2106.4 rather than 2108 and thus also a lower complexity of the

attack of 2125 but one has to be cautious as there is no guarantee that the bits

are uncorrelated enough to make the computation of this product valid.

5.8 Collisions for the complete hash function

The obstacle for extending the algorithm from Section 5.7 to the full hash func-

tion is the requirement for particular values of four chaining values, B0 required

by branch 3 and F0, G0, H0 required by branch 4. Nothing can be done about

constants necessary to achieve micro-collision in the first step of branch 4. How-

ever, in this section we show that by careful modification of some steps of the

procedure we can eliminate the need for choosing the value of the constant B0.

This section is based on the submission [37].
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5.8.1 The algorithm

Instead of solving for branch 4, then branch 3, and later making a small adjust-

ment to branch 4 again, the idea is to go through the first step of branch 4 only,

then switch to branch 3, and finally return to solve for the rest of branch 4.

Let d denote the modular difference used in M12. Recall that an allowable

value x is a value fed to register A (or E) such that there exist constants B, C, D

(or F , G, H) that cause simultaneous micro-collisions to happen in all three lines

when x, x + d are the values of register A (or E). The modified algorithm first

precomputes for difference d all allowable values for step 5 of the left Q-structure

of branch 4. Then, the steps are as follows:

Branch 4, step 1 We find x1 such that x1, x1 + d give simultaneous g - δ15 - f

micro-collisions for step 1 of branch 4, compute corresponding constants τ1, τ2, τ3

and assign F0 := τ1, G0 := τ2, H0 := τ3. Set M12 to x1 − E0 and M ′
12 to

x1 − E0 + d.

Branch 3 We choose values of M7, M6, M10, M14, M13 and M2 appearing in

the first three steps of branch 3 randomly and compute the function up to the

beginning of step 4. We check if the value E
(3)
4 + M12 is an allowable value for

the g - δ6 - f micro-collision in step 4, i.e. we test if there exist constants µ0, µ1, µ2

such that the pair E
(3)
4 + M12, E

(3)
4 + M12 + d yields micro-collisions when those

constants are set in registers F
(3)
3 , G

(3)
3 , H

(3)
3 . If it is not, we pick fresh values

of the message words and repeat the process. Once we get the right values (this

needs around 223 trials using the difference d = 0x22f80000) we modify values of

M6, M10, M14, M13 and M2 to adjust the values of F
(3)
3 , G

(3)
3 , H

(3)
3 to appropriate

constants µ0, µ1, µ2. This modification is similar to the original except here we

are required to modify M13, whereas the original algorithm avoided it because it

was set in branch 4 (instead the original algorithm modified B0). Now branch 3

is ready.

Branch 4, steps 2–4 We start with choosing random values for M5, M1, and

M15. Then values of M8, M0, and M11 are chosen to preserve the subtraction

difference d through the first 4 steps of the characteristic. This is easy to do, for
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pick
allowable M3

M3

M3 M3

try again

adjust constants
C

(4)
4 , D

(4)
4

difference in C
(4)
5 – bad

C
(4)
4 D

(4)
4B

(4)
4A

(4)
4

C
(4)
4 D

(4)
4B
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4A

(4)
4
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(4)
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(4)
4A

(4)
4

Figure 5.8: Illustration of the procedure used in step 5 of branch 3. We want to
get micro-collisions in all three lines without the need for modifying the value of

B
(4)
4 .

example, by setting the message blocks so that the input to the f function is zero

(the output of the f function is the only thing that can change the subtraction

difference). Then we compute up to the beginning of step 5. Next, we use our

precomputed table to loop through all choices of M3 that lead to allowable values

and we test each one to see if any of them does not cause a difference propagation

to C
(4)
5 for the current value of B

(4)
4 that is there. In other words, we are looking

for a value of M3 that actually induces a single micro-collision in line B and has

the potential to cause simultaneous micro-collisions in the other two lines. This

is illustrated in Fig. 5.8. If no solution is found, then we go back to solve for

branch 3 again with new random values.

Once such a solution is found, we have to set the values of C
(4)
4 and D

(4)
4

to appropriate constants so that we obtain simultaneous micro-collisions for all

three lines. We do this by adjusting the values of M1, and M15 and appropriately

compensating for these changes by adjusting M0 and M11. After this is done,

branches 3 and 4 are ready.

Branches 1 and 2 The part of the algorithm that deals with branches 1 and

2 is identical to the one presented in Section 5.7.3 and it does not require any

further explanations.

In the original attack from Section 5.7, the search complexity is dominated by

branches 1 and 2. There, 264 potential characteristics are obtained for the cost
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of 258 FORK-256 operations. Provided that the cost of the modified algorithm

for branches 3 and 4 is less than this, the overall complexity is unchanged.

With the difference of d = 0x22f80000 the probability of passing step 4 of

branch 3 is about 2−24 and the probability of passing step 5 in branch 4 is about

2−19. The cost of a single check is about eight steps of FORK-256, so 2−3 full

FORK-256 evaluations. Thus, passing branches 3 and 4 in our modified algorithm

requires about 240 FORK-256 evaluations. Hence, it does not influence the final

complexity of the attack.

5.8.2 Fixing appropriate chaining values

So far we have removed the need for the fourth initial chaining value to be fixed.

This leaves us with three 32-bit words, each one to be set to one of the possible

constants required by simultaneous micro-collisions in step 1 of branch 4. This

means that by prepending a random message block and computing the digest

that in turn becomes the chaining value for the main part of the attack we have

the probability of getting the right values of those registers at least 2−96, less

than 2126.6 required for the second phase. However, we can do much better when

we use the fact that any of the possible constants will suffice in each of the three

initial registers.

Let A be the set of allowable values for g - δ15 - f micro-collision in step 1 of

branch 4 for a given difference d. For each allowable value a ∈ A we can compute

sets Fa, Ga, Ha of constants that yield a micro-collision in the corresponding line.

Then, the probability that a randomly selected triple constitute good constants

for some allowable value a is

P = 1−
∏

a∈A

(

1− |Fa| · |Ga| · |Ha|
296

)

This probability depends on the choice of the difference d. For both differences

d = 0xdd080000 and d = 0x22f80000 it is equal to P = 2−64.8, but there are

other differences with much higher values of P . Of course those differences may

give worse performance in the main part of the attack because they are not tuned

to yield optimal chance of passing requirements of branch 1. What really matters

though is that the original differences are suitable for the improved attack.
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5.8.3 Experimental results

We implemented this modified strategy and tested it. As an example, we present

in Table 5.11 a pair of messages that give a near-collision of weight 42 of the full

hash function FORK-256. Here we used difference d =0x3f6bf009 since it has

P = 2−21.7 for the first phase of the attack.

Table 5.11: Example of a near-collision of weight 42 for the complete hash func-
tion FORK-256. The first block is used to obtain the desired values of chaining
registers that enable the attack on the compression function.

2d4458a4 57976f57 3e44cfd9 1ab54cb2 7ec11870 173f6573 6141c261 7db20d3e

M
2feeb74d 5fac87a6 61a73fa1 3454b23d 451d389b 78f061ec 7c32fb06 57ef1928

79dcd071 39dc97f0 3a1bff42 031d364c fef000e6 40873ef5 d0741256 649430cf

97ef5538 3eab6a7e b4f9cf72 9eba8257 4e84d457 5a6c49b6 ad1d9711 0f69afa2

2d4458a4 57976f57 3e44cfd9 1ab54cb2 7ec11870 173f6573 6141c261 7db20d3e

M ′ 2feeb74d 5fac87a6 61a73fa1 3454b23d 451d389b 78f061ec 7c32fb06 57ef1928

79dcd071 39dc97f0 3a1bff42 031d364c fef000e6 40873ef5 d0741256 649430cf

97ef5538 3eab6a7e b4f9cf72 9eba8257 8df0c460 5a6c49b6 ad1d9711 0f69afa2

diff 00000000 83480012 32b4070c 681a1279 648600ad 00000000 00000000 00000000

5.9 Summary

In this chapter we exposed a number of weaknesses of the hash function FORK-

256. We showed how the unexpected property of Q-structures (allowing for find-

ing micro-collisions) can be exploited to easily find pairs of messages that after

compressing result in a difference on only a small number of bits. We presented

how this ease of finding output differences restricted to at most 108 bits may be

exploited further to launch a collision-finding attack on the compression function

faster and with smaller memory requirements than by birthday attack.

We also showed how the attack on the compression function can be modified

to apply to the full hash function.

Our results are by no means final and complete. We expect that having more

computational power to search for more favourable cases or investigating slightly

different variations of the attacks we presented, it may be possible to improve

them significantly.

We believe that apart from the weakness of the step transformation that

enabled us to conduct our attack, the structure based on four very short branches
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computed in parallel may not be sufficiently secure. The intuition behind this

view suggests that for a small number of rounds it is relatively easy to find ways of

managing the propagation of differences and separate branches make this process

more independent and thus more feasible.
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6
Analysis of partially colliding hashes

In this chapter we consider a generic collision-finding problem inspired by our

analysis of the hash function FORK-256 (cf. Chapter 5). We ask about the

complexity of finding collisions when hash digests are generated in pairs in such a

way that for each pair, some fixed part of both digests is identical. For example,

the cryptanalysis results of FORK-256 given in Chapter 5 have the first register,

part of the second register, and the last three registers equal for each pair that

is generated. The other registers, where differences can exist, seem to have the

property that the bit differences behave very close to random.

We start with formalising the problem in section 6.1 and then develop a the-

oretical formula for the probability of collisions in a model using large storage,

similar to the classical birthday attack. In section 6.1.4 we compare the result

with the classical birthday bound on one hand and the trivial memoryless bound

on the other. We generalise our results from pairs to w-tuples in section 6.2,

including a comparison and discussion of all three methods (large memory, mem-

oryless, and generic birthday attack). Our conclusion is given in section 6.3.

119
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Figure 6.1: Each partially colliding pair of n-bit values has m bit positions where
the pairs are guaranteed to be identical, and n−m bit positions which may differ.

colliding part random part

=

n bits

m bits

6.1 Theoretical model for partial collisions

6.1.1 The problem

Consider the special case of generating pairs of n-bit hash values that agree on a

fixed m-bits and can disagree on the remaining (n −m)-bits. We will call these

sections of bits the colliding bits and the difference bits, respectively. The pairs

of hash values will be called partially colliding pairs. This situation is presented

in Fig. 6.1. Assume that the difference bits are uncorrelated and random.

To get an idea of the goal, first consider the “memoryless” version where we

examine a single pair at a time, discarding it if there is no collision, and repeating

until we find a collision. Since the probability of a collision for each single pair is

2m−n as n−m random bits have to agree, we get that the probability that none

of x pairs result in a collision is (1− 2m−n)x. If we ask for how many pairs x we

need in order to have a collision with probability q (0 < q < 1), we only need to

solve 1− (1− 2m−n)x = q. Using the approximation 1− z ≈ e−z with z = 2m−n,

which is very accurate when z is small, the solution is x = −2n−m ln(1− q). For

instance, setting q = 1− 1
e ≈ 0.63 and m = n/2 the solution is x = 2n/2 partially

colliding pairs, or 2n/2+1 hash values total. In comparison to a generic birthday

attack, using similar techniques it can be shown (see section 6.1.4) that one needs

about 2n/2+0.5 hash values and a large amount of memory1 before a collision can

be found with probability 1− 1
e . If we ignore the memory issue and ask only which

1There are various tradeoffs between memory requirements and pluralisation in differing
birthday attack strategies. It practice, one would use a method that has perfect pluralisation.
The best such solution seems to be the distinguished point method of [146]. Although it does
have reduced memory requirements, it still uses an exponential amount of disk space.
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one is faster, then the answer depends upon the time to generate the partially

colliding pairs and also the time to find the collision for the birthday strategy

once enough pairs are generated. But, since the birthday strategy involves large

amounts of memory, one could ask if the use of partially colliding pairs can be

improved by also using large amounts of memory.

At first glance, one may carelessly think that a birthday strategy applied to

the partially colliding pairs may lead to a run time of order 2(n−m)/2. Unfor-

tunately this does not work because the colliding bits for pair (ai, bi) will, in

general, not match the colliding bits for (aj , bj), j 6= i. But if one keeps all such

pairs in memory, in some cases there will be matches. The purpose of this note

is to explore how much advantage one can get from these coincidences. We show

for the above example that one only needs about 2n/2 total digests if the memory

is available. We also consider generalisations of this idea and explore to what

extent large memory can be of benefit.

We have one last remark before we begin – about 1 − z ≈ e−z and other

approximations that we will use. Similar approximations are used in [30]. Ide-

ally, we should present mathematically rigorous arguments bounding the error

probability for our application. Unfortunately, bounds such as those given in [9]

are not tight enough to draw any meaningful conclusions for the partial collision

analysis. Since we do not know how to get mathematically rigorous and mean-

ingful bounds, we instead back up our arguments with experimental evidence.

Our computer simulations match the derived formulae quite accurately.

6.1.2 A simple formula approximating the probability

To derive the formula for the probability of a collision, we model our situation as

the following occupancy problem

• Boxes correspond to common parts of pairs (colliding parts). There are M

boxes (M = 2m)

• We throw x pairs of balls into the boxes. Each ball is selected uniformly

from the set of B values (B = 2n−m, n − m is the length of the random

part of bit strings).
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• What is the probability of getting a collision (two identical balls in one

box)?

The probability that the box number i contains exactly k pairs is described as

the probability of k successes in x Bernoulli trials with success probability 1/M :

Pr[Xi = k] =

(
x

k

)(
1

M

)k (

1− 1

M

)x−k

. (6.1)

Poisson’s theorem [139] tells us that when x tends to infinity in such a way

that x · 1
M → λ > 0, this probability converges to

πk =
λke−λ

k!
.

Moreover, considering the rapidity of the convergence given by the Prohorov’s

inequality [139, § 7 of Chapter III] stating that
∑∞

k=0 |Pr[Xi = k] − πk| ≤
2λ
x ·min(2, λ) we can safely assume that

Pr[Xi = k] ≈ 1

k!
λke−λ . (6.2)

where λ = x/M .

The expected number of bins containing exactly k pairs is equal to

Ek = M · P [Xi = k] ≈ M

k!
λke−λ . (6.3)

If a container holds k pairs, then there are 2k balls altogether. There is no

collision in that particular container if all balls are different. This happens with

probability

p̂k =

(

1− 1

B

)(

1− 2

B

)

· · ·
(

1− 2k − 1

B

)

=

2k−1∏

j=1

(

1− j

B

)

≈

2k−1∏

j=1

e−j/B = Exp



− 1

B

2k−1∑

j=1

j



 = Exp

[

−2k(2k − 1)

2B

]

= e−
k(2k−1)

B . (6.4)
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Taking into account all Ek boxes containing k pairs, the probability that no

collision is present in any of the boxes is about

p̄k = p̂Ek

k =
(

e−k(2k−1)/B
)M

k!
λke−λ

= Exp

[

−k(2k − 1)

B
· M

k!
λke−λ

]

=

Exp

[

−M

B
· e−λ 2k − 1

(k − 1)!
λk

]

. (6.5)

Now, the probability that there is no collision at all is the product of proba-

bilities p̄k taken over all values of k up to the limit of x.

P̄ =

x∏

k=1

Exp

[

−M

B
· e−λ 2k − 1

(k − 1)!
λk

]

= Exp

[

−M/B · e−λ
x∑

k=1

2k − 1

(k − 1)!
λk

]

(6.6)

So we end up with the final probability of a collision in such a scenario approxi-

mately equal to

P = 1− Exp

[

−M

B
· e−λ

x∑

k=1

2k − 1

(k − 1)!
λk

]

.

In our case M = 2m and B = 2n−m, so M/B = 22m−n and

P = 1− Exp

[

−22m−n · e−λ
x∑

k=1

2k − 1

(k − 1)!
λk

]

. (6.7)

We can simplify (6.7) further using the fact that
∑∞

k=0 zk/k! = ez which con-

verges very fast, so
∑x

k=0 zk/k! ≈ ez is extremely accurate. Hence, the summation

in the exponent in (6.7) becomes

x∑

k=1

2k − 1

(k − 1)!
λk =

x−1∑

k=0

2k + 1

k!
λk+1 = λ

(

2

x−1∑

k=0

k

k!
λk +

x−1∑

k=0

1

k!
λk

)

= λ

(

2

x−1∑

k=1

k

k!
λk +

x−1∑

k=0

1

k!
λk

)

= λ

(

2

x−1∑

k=1

1

(k − 1)!
λk +

x−1∑

k=0

1

k!
λk

)

= λ

(

2λ
x−2∑

k=0

1

k!
λk +

x−1∑

k=0

1

k!
λk

)

≈ λ
(

2λeλ + eλ
)

= λeλ(2λ + 1) . (6.8)

Plugging in (6.8) to (6.7) we get the estimation

P = 1− Exp
[
−22m−n · λ(2λ + 1)

]
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and since λ = x/M = x · 2−m we can rewrite the probability of collision as

P = 1− Exp
[
−2m−n · x− 21−n · x2

]
. (6.9)

6.1.3 Practical verification of the formula

We wrote a small program that simulates the occupancy problem in question

and compared the experimental results with those given by formula (6.9). Ex-

perimental probabilities are computed as a fraction of tests that yield collision to

the total number of tests equal 100000. The results presented in Table 6.1 match

very well values obtained by the means of formula (6.9). Below we have N = 2n

and M = 2m.

Table 6.1: Comparison of probabilities of collisions obtained by a simulation with
those computed using our formula. Values are rounded to 4 decimal places.

N = 220 M = 28

x = 2q, q = 5 6 7 8 9 10 11

Pr experiment 0.0097 0.0225 0.0608 0.1694 0.4631 0.8955 0.9999
Pr theoretical 0.0097 0.0232 0.0606 0.1710 0.4647 0.8946 0.9998

N = 220 M = 210

x = 2q, q = 5 6 7 8 9 10 11

Pr experiment 0.0331 0.06795 0.1446 0.3136 0.6302 0.9528 0.9999
Pr theoretical 0.0326 0.06790 0.1447 0.3127 0.6321 0.9502 0.9999

N = 220 M = 212

x = 2q, q = 6 7 8 9 10 11 12

Pr experiment 0.22917 0.4149 0.6750 0.9189 0.9976 1.0000 1.0000
Pr theoretical 0.22726 0.4121 0.6753 0.9179 0.9975 1.0000 1.0000

N = 224 M = 210

x = 2q, q = 7 8 9 10 11 12 13

Pr experiment 0.0095 0.0223 0.0592 0.1710 0.4656 0.8946 0.9997
Pr theoretical 0.0097 0.0232 0.0606 0.1710 0.4647 0.8946 0.9998

N = 224 M = 212

x = 2q, q = 7 8 9 10 11 12 13

Pr experiment 0.0329 0.0670 0.1434 0.3135 0.6312 0.9496 0.99996
Pr theoretical 0.0326 0.0679 0.1446 0.3127 0.6321 0.9502 0.99995
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6.1.4 How much do we gain?

We now answer the core question how much data can be saved compared to the

generic birthday attack if we can generate such special pairs of outputs with

restricted differences, and also assuming that all data can fit in memory.

In the classical birthday paradox attack, the probability that we have a col-

lision after storing xbrt values is equal to

Pbrt = 1−
xbrt−1
∏

k=0

(1− k

2n
) ≈ 1− Exp

[

− 1

2n

xbrt−1
∑

k=0

k

]

= 1− Exp

[

−xbrt(xbrt − 1)

2n+1

]

If we want the probability of a collision to be q, solving for xbrt we get the result

xbrt ≈
√

−2n+1 ln(1− q) .

For q = 1− 1
e , this is 2n/2+0.5.

On the other hand, if we generate pairs with restricted differences, plugging

in P = q into (6.9) gives the following quadratic equation

2 · x2 + 2m · x− 2n ln(1− q) = 0 .

There are two solutions to this equation, one positive and one negative. Only the

positive solution makes sense in our context so the unique answer is

x =
1

4

(

−2m +
√

22m − 2n · 8 ln(1− q)
)

pairs of values (so the total number of digests is twice this).

Considering the case when m = n/2 and q = 1 − 1
e , we get 2n/2−1 pairs of

hash digests, or 2n/2 digests total. This is a factor of
√

2 times better than the

classical birthday attack.

6.1.5 Discussion

A summary of the derived formulae is given in Table 6.2. Observe that the number

of hash digests for the memoryless partial collision strategy is less than that of
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Table 6.2: Comparison of the total number of digests need to find a collision with
probability q for the three different methods.

method total number digests special case
general formula m = n/2

birthday
attack

2n/2+0.5
√

− ln(1− q) 2n/2+0.5
√

− ln(1 − q)

memoryless
partial colls

−2n−m+1 ln(1− q) −2n/2+1 ln(1 − q)

large memory
partial colls

1

2

(

−2m +
√

22m − 2n+3 ln(1− q)
)

2n/2−1

(√

1− 8 ln(1− q)− 1
)

the birthday strategy whenever 2n−2m+1 < −1/ ln(1 − q). For q = 1 − 1/e, this

means m > (n+1)/2. The memoryless colliding pairs strategy becomes costly as

m becomes smaller than half of n, as one would expect since the difference bits

occupy more than half of the hash digests. On the other hand, the large memory

colliding pairs strategy does not suffer from this because it essentially contains

within it a birthday paradox strategy. So it always is at least as good as birthday

paradox, though the benefit quickly becomes small as m does.

Another observation is that the large memory version has negligible benefit

over the memoryless version as m gets much larger than half of n. Consequently,

our results do not make any real improvement over the FORK-256 analysis of

[103], since there m = 148 and n = 256. It is conceivable, however, that the

strategy could be applied to some other hash function to get a better than birth-

day attack bound. In the past, people have sought after differential paths that

would lead to full collisions, and then attempt to find data satisfying those paths.

Our results suggest that one may consider more general paths that only lead to

partial collisions in order to potentially improve (slightly) on birthday attacks.

In the next section, we show a generalisation that leads to more promising im-

provements.

6.2 Generalisation for w-tuples

We can generalise the above results for the scenario where not pairs, but rather

tuples of w elements are generated. In this case, assume we are able to generate w

digests that all share a common fixed part (the colliding bits) and have random
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differences for the remaining part (the difference bits). Intuitively, one might

expect that we need less total hash digests for this case because within each w–

tuple we have a birthday paradox type phenomenon working for us, though it

is a much milder one than the standard birthday paradox. But how much of

an advantage we get and how much large memory can help is not clear prior

to doing the analysis. The following two subsections does these analyses, and a

comparison is given in the third subsection.

6.2.1 Memoryless version

In the “memoryless” version of the attack, we generate a w–tuple of partially

colliding hashes and examine to see if there is a collision amongst any two pairs

within the tuple. If there is no collision, we throw it away and repeat the process

until a collision is finally found.

The probability of no collision within the w–tuple is

w−1∏

j=1

(

1− j

B

)

≈ e
−w(w−1)

2B .

The number of w–tuples x needed for probability q of a collision is thus given by

the solution to q = e
−w(w−1)

2B
x, which is

x = − 2n−m+1

w(w − 1)
ln(1− q) .

The total number of hashes computed is −2n−m+1

w−1 ln(1− q).

6.2.2 Large memory version

For the large memory version, we generalise the work of section 6.1. Generalis-

ing (6.4) we have:

p̂k =

(

1− 1

B

)(

1− 2

B

)

· · ·
(

1− wk − 1

B

)

≈ e−
wk(wk−1)

2B . (6.10)

Following the same line of argument as we used to derive (6.6), we obtain

P̄ = Exp

[

−M

2B
· e−λ

x∑

k=1

wk(wk − 1)

k!
λk

]

.
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Table 6.3: Comparison of numbers of hash digests required to get probability
1 − 1

e of finding a collision for different values of w when n = 256, m = 128. A
generic birthday attack requires 2128.5 hash digests.

total number of hashes

w memoryless large memory
version version

2 2129.00 2128.00

3 2128.00 2127.55

4 2127.42 2127.17

8 2126.19 2126.14

16 2125.09 2125.08

256 2121.01 2121.01

216 2113.00 2113.00

Again, using the Maclaurin series expansion of the exponential function we obtain

a close approximation to the sum
∑x

k=1
wk(wk−1)

k! ≈ eλ
(
w2λ2 + w2λ− wλ

)
, and

use it to get the following generalisation of (6.9)

P =1− Exp

[

−M

2B
wλ(wλ + w − 1)

]

= 1− Exp
[

−wx

2B

(wx

M
+ w − 1

)]

=1− Exp
[
−wx · 2−n−1 (wx + (w − 1)2m)

]
. (6.11)

Once can then derive the formula

x =
1

2w

(

−(w − 1)2m +
√

(w − 1)2 · 22m − 8 · 2n ln(1− q)
)

for the number x of w-tuples that have to be stored to assure probability q of a

collision. The total number of hash digests is w times this, i.e.

1

2

(

−(w − 1)2m +
√

(w − 1)2 · 22m − 8 · 2n ln(1− q)
)

.

6.2.3 Comparisons

Table 6.3 compares the number of total digests needed for both the memoryless

and large memory versions with n = 256, m = 128, q = 1 − 1
e , and using

various choices of w. Recall also that the generic birthday attack that needs

2n/2+0.5 = 2128.5 hashes.

One can readily see that the ability to generate these w–tuples efficiently can
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lead to improved attacks on hash functions. This further justifies the potential

application of searching for partially colliding differentials (as opposed to fully

colliding differentials, which may be harder to find) in the cryptanalysis of hash

functions. It also shows that the memoryless version is just as good as the one

using large memory for almost all values of w.

In fact, section 3.3 of the analysis of FORK-256 paper [103] presents a similar

scenario, with w = 232, m = 128, and n = 256. However, they are only able to

get a 1-bit near collision (since the differential has the property that it can never

be a full collision). Moreover, their results (based on experiments) are better

than our theory predicts due to the observation that the difference bits seem to

be somewhat correlated.

6.3 Summary

In this chapter we presented results of our investigation into partially colliding

digests. We demonstrated that the use of partially colliding pairs may lead to

better than birthday paradox attacks on hash functions. Our analysis was mainly

concerned with the number of digests needed to be generated, and ignored prac-

tical memory requirements. Furthermore, the use of partially colliding w–tuples

has much more potential, since it can require much less hash digests and does

not need large memory in order to get good benefits but the applicability of these

results is contingent upon efficient methods of finding partial collisions.
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7
Conclusions and future research directions

7.1 Thesis summary

In this thesis we studied problems related to analysis and design of dedicated

hash functions. We performed security analysis of a number of popular designs

and showed weaknesses in some of them. All our results show that differential

cryptanalsis, a fundamental tool used to analyse hash functions, has still a lot of

potential when applied to dedicated designs. We showed that the fundamental

problem of finding suitable differential characteristics is closely related to a well-

known problem in coding theory of finding codewords with minimal weights.

We have also illustrated how this observation can be used as the fundamental

cryptanalytic tool.

Even though this thesis contains mainly negative results, i.e. we exhibit poti-

ential or actual weaknesses in some designs of dedicated hash functions, we hope

that it will also contribute to the design aspect by highlighting the crucial issues

that need to be consider during the design process.
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Note that differential cryptanalysis is still one of the most effective attacks

that can be launched against hash functions.

This work documents a tiny fraction of recent results that show weaknesses

of dedicated hash functions. These results show that the main difficulty and

the main challenge when designing dedicated cryptographic hash functions is the

immunity against differential analysis. However, most of dedicated hash functions

designed up to date do not come with any security proof that would guarantee

that some of the security gaols are achieved. We believe that this situation should

change and designers should turn to some well-established solutions used for block

ciphers like the Wide Trail Strategy [43].

7.2 Future research directions

7.2.1 Design

Recent cryptographic attacks that threatened some of the most popular hash

functions generated a lot of interest in this area. They also stimulated NIST to

announce a competition for the Advanced Hash Standard [117], similar to the

one used to select AES. This means that in coming years the research on hash

functions will concentrate on the development of a new algorithm (or algorithms)

that will be future replacements for functions of the SHA family.

The challenge seems to be greater than for the AES competition. This is

mainly because there is no agreement in the cryptographic community on what

exactly are the security properties we should expect from the new hash standard.

Therefore the first task is to determine the required security properties of the

hash functions in the context of their present and future applications.

Only after that stage is finished, researchers can focus on designing functions

that satisfy those properties.

While designing hash functions, there are two related although different as-

pects, namely, the design of secure compression functions and the design of ap-

propriate modes of operation that can transfer the security properties from the

underlying compression function to the hash function.

Heuristic designs of hash functions do not guarantee that the resulting hash
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achieves the appropriate security goals. The way out could be to design prov-

ably secure hash functions. In such designs, breaking the security goals of hash

function is equivalent to breaking a well-known intractable problem (such as fac-

torization or discrete logarithm).

It seems that to avoid unpleasant surprises that are always possible for heuris-

tic designs, the preferred direction of research would be into provably secure de-

signs. A lot of research is awaiting in this direction, most notably on improving

the efficiency of provably secure constructions and finding new, suitable hard

problems.

In a longer perspective, one should take into account the growing potential of

quantum computing that can significantly change our view of intractable prob-

lems.

So far, the field of quantum computing is only beginning to emerge, but one

has to bear in mind that in 30 years quantum computers may become practical

and this potential threat should be also considered for applications requiring very

long life.

7.2.2 Analysis

A possible continuation of the research that is the topic of this thesis could go

in two directions. Authors of FORK-256 recently presented an improved version

of the design [80]. They used bijective functions f and g and changed the step

transformation to elliminate the possibility of simultaneous micro-collisions. Still,

the design is based on four short parallel branches and it is an interesting question

to see whether this construction is significantly more secure than the previous one.

Another, very interesting question is how to get better attacks on SHA-256.

It is definitely worth looking at the possiblity of adopting the method presented

in [50] to the structure of SHA-256. It involves many substantial difficulties, like

the problem of a very complex nature of step transformation, complicated non-

linear relations in the step transformation and the problem of finding a message

that would follow the characteristics that works in spite of limited freedom in

adjusting particular values of bits by changing message bits. In this context,

it may be worth investingating tools such as SAT solvers, recently applied to
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analysis of hash functions [113, 48].

Finally, the hash function competition is going to be a really exciting event

for cryptanalysts. We can expect a host of new, interesting designs, a variety

of fresh approaches and solutions. It will be a rich source of designs that need

testing and evaluation, the favourite work of a cryptanalyst. I am really looking

forward to it.
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