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Abstract

We describe protocols for three or more parties to jointly generate a composite N = pgr which is
the product of three primes. After our protocols terminate N is publicly known, but neither party
knows the factorization of N. Our protocols require the design of a new type of distributed primality
test for testing that a given number is a product of three primes. We explain the cryptographic
motivation and origin of this problem.

1 Introduction

In this paper, we describe how three (or more) parties can jointly generate an integer N which is the
product of three prime number N = pgr. At the end of our protocol the product N is publicly known,
but neither party knows the factorization of N. Our main contribution is a new type of probabilistic
primality test that enables the three parties to jointly test that an integer N is the product of three
primes without revealing the factorization of N. Our primality test simultaneously uses two groups:
the group Z}; and the projective line over Zy.

The main motivation for this problem comes from cryptography, specifically the sharing of an
RSA key. Consider classical RSA: N = pq is a public modulus, e is a public exponent and d is secret
where de = 1 mod ¢(IN). At a high level a digital signature of a message M is obtained by computing
M¢% mod N. In some cases the secret key d is highly sensitive (e.g. the secret key of a Certification
Authority) and it is desirable to avoid storing it at a single location. Splitting the key d into a number
of pieces and storing each piece at a different location avoids this single point of failure. One approach
(due to Frenkel [8]) is to pick three random numbers satisfying d = d; + da + d3 mod ¢(N) and store
each of the shares dj,dy,ds at one of three different sites. To generate a signature of a message M
site 4 computes S; = M% mod N for i = 1,2,3 and sends the result to a combiner. The combiner
multiplies the S; and obtains the signature S = 515255 = M® mod N. If one or two of the sites are
broken into, no information about the private key is revealed. An important property of this scheme
is that it produces standard RSA signatures — the user receiving the signature is totally unaware of
the extra precautions taken in protecting the private key. Note that during signature generation the
secret key is never reconstructed at a single location.

To provide fault tolerance one slightly modifies the above technique to enable any two of the three
sites to generate a signature. This way if one of the sites is temporarily unavailable the Certification



Authority can still generate signatures using the remaining two sites. If the key was only distributed
among two sites the system would be highly vulnerable to faults.

We point out that classic techniques of secret sharing [15] are inadequate in this scenario. Secret
sharing requires one to reconstruct the secret at a single location before it can be used, hence intro-
ducing a single point of failure. The technique described above of sharing the secret key such that it
can be used without reconstruction at a single location is known as Threshold Cryptography. See [10]
for a succinct survey of these ideas and nontrivial problems associated with them.

An important question left out of the above discussion is key generation. Who generates the RSA
modulus NV and the shares dy, do, d3? Previously the answer was a trusted dealer would generate N and
distribute the shares dy, do, ds to the three sites. Clearly this solution is undesirable since it introduces
a new single point of failure — the trusted dealer. It knows the factorization of N and the secret key d.
If it is compromised the secret key is revealed. Recently Boneh and Franklin [2] designed a protocol
that enables three (or more) parties to jointly generate an RSA modulus N = pq and shares dy, ds, d3
of a private key. At the end of the protocol the parties are assured that N is indeed the product of
two large primes however non of them know its factorization. In addition each party learns exactly
one of dy,ds, ds and has no computational information about the other shares. Thus, there is no need
for a trusted dealer. We note that Cocks [6] introduced a heuristic protocol enabling two parties to
generate a shared RSA key.

In this paper we design an efficient protocol enabling three (or more) parties to generate a modulus
N = pgr such that neither party knows the factorization of N. Once N is generated the same
techniques used in [2] can be used to generate shares d,ds, d3 of a private exponent. For this reason
throughout the paper we focus on the generation of the modulus N = pqr and ignore the generation of
the private key. The methods of [2] do not generalize to generate a modulus with three prime factors
and new techniques had to be developed for this purpose.

We remark that techniques of secure circuit evaluation [1, 5, 17] can also be used to solve this
problem. However, these protocols are mostly theoretical resulting in extremely inefficient algorithms.

2 DMotivation

The problem discussed in the paper is a natural one and thus our solution is of independent inter-
est. Nonetheless, the problem is well motivated by a method for improving the efficiency of shared
generation of RSA keys. To understand this we must briefly recall the method used by Boneh and
Franklin [2]. We refer to the three parties involved as Alice, Bob and Carol. At a high level to generate
a modulus N = pq the protocol works as follows:

Step 1 Alice picks two random n bit integers pg, qq, Bob picks two random n bit integers py, g, and
Carol picks two random n bit integers p., ¢.. They keep these values secret.

Step 2 Using a private distributed computation they compute the value

N = (pa +pp+pe) (o + @ + ¢c)

At the end of the computation NN is publicly available however no other information about the
private shares is revealed. This last statement is provable in an information theoretic sense.

Step 3 The three parties perform a distributed primality test to test that IV is the product of exactly
two primes. As before, this step provably reveals no information about the private shares.



Step (3), the distributed primality test, is a new type of probabilistic primality test which is one of
the main contributions of [2]. Step (2) is achieved using an efficient variation of the BGW [1] protocol.

A drawback of the above approach is that both factors of N are simultaneously tested for primality.
Hence, the expected number of times step (3) is executed is O(n?). This is much worse than single
user generation of N where the two primes are first generated separately by testing O(n) candidates
and then multiplied together. When generating a 1024 bit modulus this results in significant slowdown
when compared with single user generation.

To combat this quadratic slowdown one may try the following alternate approach.

Step 1 Alice picks a random n bit prime p and a random 7 bit integer r,. Bob picks a random n bit
prime ¢ and a random n bit integer . Carol picks a random n bit integer .. They keep these
values secret.

Step 2 Using a private distributed computation they compute the value
N = pQ(ra + 7y + Tc)

At the end of the computation N is publicly available however no other information about the
private shares is revealed.

Step 3 The three parties use the results of this paper to test that N is the product of exactly three
primes. This step provably reveals no information about the private shares.

At the end of the protocol neither party knows the full factorization of N. In addition, this approach
does not suffer from the quadratic slowdown observed in the previous method. Consequently, it is
faster by roughly a factor of 50 (after taking effects of trial division into account). As before, step (2)
is carried out by an efficient variant of the BGW protocol.

Instead of solving the specific problem of testing that N = pq(r, + 7, + ) is a product of three
primes we solve the more general problem of testing that

N = (pa + Do +pc)(Qa + 'l‘QC)(Ta + 7 +7nc)

is a product of three primes without revealing any information about the private shares. This primality
test is the main topic of this paper.

For the sake of completeness we point out that in standard single party cryptography there are
several advantages to using an RSA modulus N = pgr rather than the usual N = pq (the size of
the modulus is the same in both cases). First, signature generation is much faster using the Chinese
Remainder Theorem (CRT). When computing M? mod N one only computes M¢™°4P~1 mod p for
all three factors. Since the numbers (and exponents) are smaller signature generation is about twice
as fast as using CRT with N = pg. Another advantage is that an attack on RSA due to Wiener [16]
becomes less effective when using N = pqr. Wiener showed that for N = pg if d < N /4 one can
recover the secret key d from the public key. When N = pqgr the attack is reduced to d < N 1/6 and
hence it may be possible to use smaller values of d as the secret key. Finally, we note that the fastest
factoring methods [13] cannot take advantage of the fact that the factors of N = pgr are smaller than
those of a standard RSA modulus N = pq.



3 Preliminaries

In this section, we explain the initial setup for our new probabilistic primality test and how it is
obtained. We then explain a basic protocol which we use in the later parts of the paper. At first reading
the reader may wish to skip to Section 4 and take on faith that the necessary setup is attainable.

3.1 Communication and privacy model

The communication and privacy model assumed by our protocol are as follows:

Full connectivity Any party can communication with any other party. This is a typical setup on a
local network or the Internet.

Private and authenticated channels Messages sent from party A to party B are private and can-
not be tampered with en route. This simply states that A and B share a secret key which they
can use for encryption and authentications.

Honest parties We assume all parties are honestly following the protocol. This is indeed the case
when they are truly trying to create a shared key. This assumption is used by both [2] and [6].
We note that some recent work [9] makes the protocol of [2] robust against cheating adversaries
at the cost of some slowdown in performance (roughly a factor of 100). These robustness results
apply to the protocols described in this paper as well.

Collusion Our protocol is 1-private. That is to say that a single party learns no information about
the factorization of N = pqr. However, if two of the three parties collude they can recover
the factors. For three parties this is fine since our goal is to enable two-out-of-three signature
generation. Hence, two parties are always jointly able to recover the secret key. More generally,
when k parties participate in our primality test protocol one can achieve L%J privacy. That
is, any minority of parties learns no information about the factors of V.

3.2 Generations of N

In the previous section we explained that Alice, Bob and Carol generate N as

N = (pa + Do +pc)(Qa + qp 'l‘QC)(Ta +7p +7nc)

where party ¢ knows p;, q;,; for i« = a,b,c and keeps these shares secret while making N publicly
available. To compute N without revealing any other information about the private shares we use
the BGW protocol [1]. For the particular function above the protocol is quite efficient requiring three
rounds of communication and a total of 6 messages. The protocol is information theoretically secure,
i.e. other than the value of IV party ¢ has no information about the shares held by other parties. This
is to say the protocol is 1—private.

We do not go into the details of how the BGW protocol is used to compute N since it is tangential
to the topic of this paper — testing that IV is a product of three distinct primes. For our purpose it
suffices to assume N is public while the private shares are kept secret.

An important point is that our primality test can only be applied when p,+pp+pc = ¢a + @+ g =
rqe + 75+ 7. = 3 mod 4. Hence, the parties must coordinate the two lower bits of their shares ahead of
time so that the sums are indeed 3 modulo 4. Indeed, this means that a priori each party knows the
two least significant bits of the other’s shares.



3.3 Sharing of (p—1)(¢—1)(r—1) and (p+1)(¢+1)(r+1)

Let p = pa + 0o+ Pey ¢ = qa+ @ + gc and 7 = 14 + 1 + 7. We define ¢ = (p — 1)(¢ — 1)(r — 1).
Since p, ¢, are not necessarily prime ¢ may not equal ¢(IN). Our protocol requires that the value ¢
be shared additively among the three parties. That is, ¢ = ¢, + ¢ + . where only party ¢ knows ¢;
for i =a,b,c.

An additive sharing of ¢ is achieved by observing that p = N —pq—pr —qr+p+q+7r—1. To
share ¢ it suffices to represent pq + pr + ¢r using an additive sharing A + B + C among the three
parties. The additive sharing of ¢ is then

0a=N—-A+pi+q.+re—1 ;3 op=—B+p+ag+r ; @c=—-C+pc+qc+re

The conversion of pqg + pr 4 gr into an additive sharing A+ B + C is carried out using a simple variant
of the BGW protocol used in the computation of N. The BGW protocol can be used to compute
the value pgq; however, instead of making the final result public the BGW variant shares the result
additively among the three parties. The details of this variant can be found in [2, Section 6.2].

As before, we do not give the full details of the protocol for converting pqg + pr + ¢r into an additive
sharing. Since we wish to focus on the primality test it suffices to assume that an additive sharing of
¢ is available in the form of ¢, + v + @c.

In addition to a sharing of ¢ we also require an additive sharing of ¢ = (p+1)(¢+1)(r +1). Once
an additive sharing of pq + pr + qr is available it is trivial to generate an additive sharing of . Simply
set

Yo=N+A+pitdatratl 5 Pp=B+ptapt+re ; ¢Ye=C+petgetre

3.4 Comparison protocol

Our primality test makes use of what we call a comparison protocol. Let A be a value known to Alice,
B a value known to Bob and C a value known to Carol. We may assume A, B,C € Z};. The protocol
enables the three parties to test that ABC = 1 mod N without revealing any other information about
the product ABC. We give the full details of the protocol in this section.

Let P > N be some prime known to all parties. The protocol proceeds as follows:

Step 1. Carol picks a random element C; € Z; and sets Cy = C’Cfl mod N. Clearly C = C1Cy mod
N. Carol then sends C] to Alice and Cy to Bob.

Step 2. Alice sets A’ = AC; and Bob sets B’ = (BC3) ! mod N. Both values A’ and B’ can be
viewed as integers in the range [0, N). The problem is now reduced to testing whether A" = B’
(as integers) without revealing any other information about A and B.

Step 3. Alice picks a random ¢ € Z} and d € Zp. She sends c¢,d to Bob. Alice then computes
h(A") = cA" + d mod P and sends the result to Carol. Bob computes h(B') = ¢B' + d mod P
and sends the result to Carol.

Step 4. Carol tests if h(A') = h(B') mod P. If so, she announces that ABC = 1 mod N. Otherwise
she announces ABC # 1 mod N.

The correctness and privacy of the protocol are stated in the next two lemmas. Correctness is
elementary and is stated without proof.



Lemma 3.1 Let A,B,C € Z},. At the end of the protocol the parties correctly determine if ABC =
lmod N or ABC # 1 mod N.

Lemma 3.2 The protocol is 1—private. That is, other than the result of the test each party learns no
other information.

Proof To prove the protocol is 1—private we provide a simulation argument for each party’s view of
the protocol. Alice’s view of the protocol is made up of the values A, C1, ¢, d, h(A’) and the final result
of the test. These values can be easily simulated by picking C; at random in Z%;, picking ¢ at random
in Zp and d at random in Zp. This is a perfect simulation of Alice’s view. A simulation argument for
Bob is essentially the same.

Simulating Carol’s view is more interesting. Carol’s view consists of C,C1,Co, h(A’), h(B’) and
the result of the test. The point is that h(A’) and h(B’) reveal no information about A and B since
they are either equal, or random independent elements of Zp. Which of the two is determined by the
result of the test. The independence follows since the family of hash functions h(z) = cz + d mod P
is a universal family of hash functions (i.e. not knowing ¢, d the values h(z), h(y) are independent for
any z,y € Zp).

To simulate Carol’s view the simulator picks C1,Cy € Z% at random so that ¢' = C1C3 mod N.
Then depending on the results of the test it either picks the same random element of Zp twice or
picks two random independent elements of Zp. This is a perfect simulation of Carol’s view. This
proves Carol gains no extra information from the protocol since given the outcome of the test, she can
generate the values sent by Alice and Bob herself. 0

4 The probabilistic primality test

We now describe the main primality test. As discussed in the previous section our primality test
applies once the following setup is achieved:

Shares Each party ¢ has three secret n-bit values p;, ¢;,; for i = a, b, c.

The modulus N = (py +pp + pc)(qa + @ + qc) (ra + 75 + 7¢) is public. We set p = py + py + pe, q =
Got+qp+4qc and r = rq+rp+r.. Throughout the section we are assuming that p = ¢ = r = 3 mod 4.
Thus, the parties must a priori coordinate the two least significant bits of their shares so that
this condition holds.

Sharing $,4: The parties share (p — 1)(q — 1)(r — 1) as @4 + @b + @ and (p + 1)(q +1)(r + 1) as
Ya + P + Pe.

Given this setup they wish to test that p,q and r are distinct primes without revealing p, ¢, r. At this
point nothing is known about p, ¢, other than p = ¢ = r = 3 mod 4. Throughout the section we use
the following notation:

s§=¢a+<pb+soc=(p—l)(q—l)(r—l)
"/’Zqﬁa‘l‘?ﬁb‘l"‘/)c:(p+1)(Q+1)(T+1)

Clearly if N is a product of three distinct primes then ¢(N) = ¢. Otherwise, this equality may not
hold.



Our primality test is made up of four steps. We first state what each step tests for and in the
subsequent subsections explain how each step is carried out without revealing any information about
the factors of V.

Step 1 The parties pick a random ¢ € Z}, and jointly test that g¥et# % = 1 mod N. If the test
fails N is rejected. This step reveals no information other than the outcome of the test. We
refer to this step as a Fermat test in Z7;.

Step 2 The parties perform a Fermat test in the twisted group Ty = (Zn[z]/(2%2+1))*/Z%,. Elements
of this group can be viewed as points on the projective line over Zy. If N is the product of three
distinct primes then the order of Ty is (p+1)(¢+1)(r+1). Indeed, 2?41 is irreducible modulo
N since p = ¢ = r = 3 mod 4. To carry out the Fermat test in Ty the parties pick a random
g € Ty and jointly test that g¥et¥»t% = 1. If the test fails IV is rejected. This step reveals no
information other than the outcome of the test.

Step 3 The parties jointly test that IV is the product of at most three prime powers. The implemen-
tation of this step is explained in the next subsection. If the test fails N is rejected.

Step 4 The parties jointly test that
ged(N,p+q+7) =1
This step reveals no information other than the outcome of the test. The implementation of this

step is explained in the subsection 4.3. If the test fails IV is rejected. Otherwise IV is accepted
as the product of three primes.

The following fact about the twisted group Tn = (Zy[x]/(2? + 1))*/Z% is helpful in the proof of
the primality test.

Fact 4.1 Let N be an integer and k*|N with k prime. Then k divides both o(N) and |Ty|.
Proof Let o > 2 be the number of times k divides N, i.e. N = k*w where ged(k,w) = 1. Then
©(N) = k*(k — 1)¢(w) and hence k divides ¢(N).

To see that k divides | Ty | note that Ty = Tga x Typ. When k = 3 mod 4 we know that 2 + 1 is

irreducible in Zj and hence |Tyo| = k*~1(k + 1). It follows that k divides |Ty|. When k = 1 mod 4
we have |Tga| = k% 1(k — 1) and therefore again k divides |Ty|. O

We can now prove that the above four steps are indeed a probabilistic test for proving that IV is
a product of three primes.

Theorem 4.2 Let N = pqr = (pg +pp+0c)(qa + @+ qc) (1o + 74+ 7¢) where p=q =r =3 mod 4 and
ged(N,p+q+7r) =1. If N is a product of three primes it is always accepted. Otherwise, N is rejected
with probability at least half. The probability is over the random choices made in steps 1—4 above.

Proof Suppose p,q and r are distinct primes. Then steps (1),(2) and (3) clearly succeed. Step (4)
succeeds by assumption on N. Hence, in this case IV always passes the test as required.

Suppose N is not the product of three distinct primes. Assume for a contradiction that N passes
all four steps with probability greater than 1/2. Since N passes step (3) with probability greater than
1/2 we know that N = 21" 25?23 for three primes z1, 22, 23 (not necessarily distinct). Since N passes
step (4) we know gcd(NV,p + g + r) = 1. Define the following two groups:

G = {g€ely st. gretvtve =1}
H = {g €Ty s.t. gletvorve — 1}

7



Clearly G is a subgroup of Z% and H is a subgroup of the twisted group Tx. We show that at least
one of G or H is a proper subgroup which will prove that either steps (1) or (2) fails with probability
at least 1/2. There are two cases to consider.

Case 1: p, ¢, and r are not pairwise relatively prime. By symmetry we may assume, without loss of
generality, that gcd(p, q) > 1. Let k be a prime factor of ged(p, ¢). Recall that N is odd so k > 2
(since k divides V).

Since N = pqr we know that k*|N. Hence, by Fact 4.1, k[¢(N) and k||Ty[. We claim that
either k doesn’t divide ¢ or k doesn’t divide 1,0 To see thls observe that if k|¢ and k|1,b, then &
divides 9 — ¢ = p(2q + 2r) + ¢(2r) + 2. Since k divides both p and ¢ we conclude that k|2, which
contradicts k > 2.

First we examine when & doesn’t divide ¢. Since k is a prime factor of ¢(N) there exists an
element g € Z}, of order k. However, since k does not divide ¢ we know that g® # 1. Hence,
g € G proving that G is a proper subgroup of Z%. If k doesn’t divide 1,Z a similar argument
proves that H is a proper subgroup of the twisted group Ty.

Case 2: p, g, and r are pairwise relatively prime. We can write p = 2{' ,q = zg and r = zg with

21, 29, 23 distinct primes. By assumption we know that one of «, 3,y is greater than 1. Without
loss of generality we may assume « > 1.

We first observe that none of the z; can divide gcd(@,qﬁ). Indeed, if if this were not the case
then z;|¢ + ¢ = 2(N + p 4+ g + ). But then, since z; divides N it must also divide p + g + r
contradicting the fact that gcd(N,p+ ¢ +r) = 1 as tested in step (4).

We now know that z; does not divide ¢ or it does not divide 1,5 However, since z? divides N we
obtain, by Fact 4.1, that z;|p(/V) and 2 ||Ty|. We can now proceed as in case (1) to prove that
either G' is a proper subgroup of Z%; or H is a proper subgroup of Ty. O

Clearly most integers N that are not a product of three primes will already fail step (1) of the
test. Hence, steps (2-4) are most likely executed only once a good candidate N is found.

The condition ged(N,p + g+ ) = 1 is necessary. Without it the theorem is false as can be seen
from the following simple example: p = p$ ,q = ap? + 1 ,r = bp? — 1 where py,q,r are three odd
primes with p = ¢ = r = 3 mod 4. In this case N = pgr will always pass steps 1-3 even though it is
not a product of three distinct primes.

4.1 Step 3: Testing that N = p®¢®r7

Our protocol for testing that NV is a product of three prime powers borrows from a result of van de
Graaf and Peralta [12]. Our protocol works as follows:

Step 0 By definition of ¢ we know it is divisible by 8. However, the individual shares ¢, @3, ¢ which
sum to ¢ may not be. To correct this Alice generates two random numbers a1, as € Zg such that
a1 + a2 = @, mod 8. She sends a; to Bob and a9 to Carol. Alice sets p, < ¢, — a1 — az, Bob
sets @y < @p + a1 and Carol set @, < @, + az. Observe that at this point

s= 5+l [5]
8 8+ 8 * 8



Step 1 The parties first agree on eight random numbers g1, ..., gg in Z%;, all with Jacobi symbol +1.

Step 2 For 4,5 =1,...,8 we say that ¢ is equivalent to j if

vateptec

gi 8
(— =1 (mod N)
gj

Since all three parties know g; and g; they can test if ¢ is equivalent to j as follows:

1. Alice computes A = (g;/g;)?*/® mod N,
Bob computes B = (g;/g;)\#*/8] mod N and
Carol computes C' = (g;/g;)?</81 mod N.

2. Using the comparison protocol of section 3.4 they then test if ABC = 1 mod N. The
comparison protocol reveals no information other than whether ABC' =1 mod N or not.

Step 3 If the number of equivalence classes is greater than four N is rejected. Otherwise N is
accepted.

Testing that the number of equivalences classes is at most four requires at most 22 invocations
of the comparison protocol in the worst case. The reason for restricting attention to elements g; of
Jacobi symbol +1 is efficiency. Without this restriction the number of equivalence classes to check for
is eight. Thus, many more applications of the comparison protocol are necessary.

The following lemma shows that when N is a product of three distinct primes it is always accepted.
When N has more than three prime factors it is rejected with probability at least 1/2. If N is a product
of three prime powers it may always be accepted by this protocol. We use the following notation:

9
J = Ly s.t. (—) =41
{9y s N) =T }
Q = {g€J s.t. gisa quadratic residue in Z}

The index of @ in J is 2¢(¥)=1 or 24N) where d(N) is the number of distinct prime factors of N.

Lemma 4.3 Let N = pqr be an integer with p = q=r = 3 mod 4. If p,q,r are distinct primes then
N is always accepted. If the number of distinct prime factors of N is greater than three then N is
rejected with probability at least %

Proof If N is the product of three distinct primes then the index of @) in J is four. Two elements
91,92 € Z3 belong to the same coset of ) in J if and only if g1/g2 is a quadratic residue, i.e. if and
only if (g1/g2)?™)/® =1 mod N. Since in this case ¢(N) = ¢ = @4 + @y + @, step (2) tests if g; and
gj are in the same coset of (). Since the number of cosets is four there are exactly four equivalence
classes and thus N is always accepted.

If N contains at least four distinct prime factors we show that it is rejected with probability at
least 1/2. Define

Q:{gEJ st g?/8 =1 (mOdN)}

Since in this case ¢ may not equal ¢(N) the group Q is not the same as the group Q.

We show that the index of Q in J is at least eight. Since p = ¢ = r = 3 mod 4 we know that ¢/8
is odd (since ¢ = (p —1)(¢ — 1)(r — 1) ). If g € J satisfies g* = 1 for some odd x then g must be a



quadratic residue (it’s root is glrth/ 2). Hence, Q) C Q and hence is a subgroup of ). Since the index
of @ in J is at least eight it follows that the index of @) in J is at least eight.

It remains to show that when the index of Q in J is at least eight then N is rejected with probability
at least 1/2. In step (2) two elements gy, g, € J are equivalent if they belong to the same coset of )
in J. Let R be the event that all 8 elements g; € J chosen randomly in step (1) fall into only four of

the eight cosets. Then
peir < (5) (L) =027 < L
=g 2 )T

N is accepted only when the event R occurs. Since it occurs with probability less than 1/2 the number
N is rejected with probability at least 1/2 as required. O

Next we prove that the protocol leaks no information when N is indeed the product of three
distinct primes. In case N is not of this form the protocol may leak some information; however in
this case IV is discarded and is of no interest. To prove that the protocol leaks no information we
rely on a classic cryptographic assumption [4] called Quadratic Residue Indistinguishability or QRI for
short. This cryptographic assumption states that when N = pg with p = ¢ = 3 mod 4 no polynomial
time algorithm can distinguish between the groups J and ) defined above. In other words, for any
polynomial time algorithm A and any constant ¢ > 0

4% ) _ & ) 1
9136’5[«4(9)— yes”] gEE[A(g)_ yes”] <7(10g N)e

The following lemma, relies on QRI when N is the product of three primes.
Lemma 4.4 If N is a product of three distinct primes then the protocol is 1-private assuming QRI.

Proof Sketch To prove that each party learns no information other than the fact that N is a prod-
uct of three prime powers we provide a simulation argument. We show that each party can simulate
its view of the protocol. Hence, whatever values it receives from its peers, it could have generated
itself. By symmetry we may only consider Alice. Alice’s view of the protocol consists of the elements
g1, --,9s and bit values b; ; indicating whether (g;/g;)¥ = 1. (we already gave a simulation algorithm
for the comparison protocol in Section 3.4). Thus, Alice learns whether ¢;/g; is a quadratic residue or
not. We argue that under QRI this provides no computational information since it can be simulated.
To simulate Alice’s view the simulation algorithm works as follows: it picks eight random elements
gi,--.,9s € J. It then randomly associates with each g; a value in the set {0,1,2,3}. This value
represents the coset of () that g; is in. The simulator then says that g;/g; is a quadratic residue if
and only if the value associates with g; is equal to that associated with g;. Under QRI the result-
ing distribution on g1,...,g8,b1,1,...,bs g is computationally indistinguishable from Alice’s true view
of the protocol. We note that the value a; € [0, 8] Alice sends Bob in Step (0) is a uniform random
element of Zg. Hence, it is trivially simulatable by Bob. Similarly as € [0, 8] is simulatable by Carol. OJ

4.2 Implementing a Fermat test with no information leakage

We briefly show how to implement a Fermat test in Z7% without leaking any extra information about
the private shares. The exact same method works in the twisted group Ty as well.

To check that g € Z%; satisfies g#*T#v*%e =1 mod N we perform the following steps:

10



Step 1 Each party computes R; = ¢g¥* mod N for i = a, b, c.

Step 2 They test that R,RyR. = 1 mod N be revealing the values R;, Ry, R3. Accept N if the test
succeeds. Otherwise reject.

Clearly the protocol succeeds if and only if ¢¥ = 1 mod N. We show that it leaks no other
information.
Lemma 4.5 If N = pqr is the product of three distinct primes then the protocol is 2—private.
Proof We show that any two parties learn no information about the private share of the third other
than g¥ = 1 mod N. By symmetry we restrict attention to Alice and Bob. Since by assumption N
is the product of three primes we know that ¢¥ = 1 mod N. Hence, g¥+t%» = g=%<. To simulate the
value received from Carol the simulation algorithm simply computes g~ %¢. Indeed, this is a perfect
simulation of Alice and Bob’s view. Thus, they learn nothing from Carol’s message since they could
have generated it themselves. 0

4.3 Step 4: Testing that gcd(N,p+ ¢+ r) =1 in zero knowledge

Our protocol for this step is based on a protocol similar to the one used in the computation of N. We
proceed as follows:

Step 1 Alice picks a random y, € Zy. Bob picks a random y;, € Zy. Carol picks a random y. € Zy.

Step 2 Using the BGW protocol as in Section 3.2 they compute
R=(pa+qa+p+a+pctqe) (Yo +yp+yc) mod N

At the end of the protocol R is publicly known, however no other information about the private
shares is revealed.

Step 3 Now that R is public the parties test that gcd(R, N) = 1. If not, N is rejected. Otherwise N
is accepted.

Lemma 4.6 If N = pqr is the product of three distinct n-bit primes with gcd(N,p +q+ 1) =1 then
N is accepted with probability 1 — e for e < 1/2™. Otherwise, N is always rejected.

Proof Clearly if gcd(N,p + ¢+ r) > 1 then ged(R,N) > 1 and therefore N is always rejected. If
gcd(N,p+qg+r) =1 then N is rejected only if gcd(N, yo +yp +vyc) > 1. Since y, +yp + Y. is a random
element of Z y this happens with probability less than (1/2)". O

Lemma 4.7 If N = pqr is the product of three distinct n-bit primes with gcd(N,p +q+ 1) =1 then
the protocol is 1—private.

Proof Since the BGW protocol is 1—private the above protocol can be at most 1—private. We show
how to simulate Alice’s view. Alice’s view consists of her private shares pq, qq, Yo and the number R.
Since R is independent of her private shares the simulator can simulate Alice’s view by simply picking
R in Zpy at random. This is a perfect simulation. O
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5 Extensions

One can naturally extend our protocols in two ways. First, one may allow more than three parties to
generate a product of three primes with an unknown factorization. Second, one may wish to design
primality tests for testing that IV is a product of k primes for some small k. We briefly discuss both
extensions below.

Our protocols easily generalize to allow any number of parties. When k parties are involved the
protocols can be made L%J private. This is optimal in the information theoretic sense and follows
from the privacy properties of the BGW protocol. The only complexities in this extension are the
comparison protocol of Section 3.4 and Step (0) of Section 4.1. Both protocols generalize to k parties

however they require a linear (in k) number of rounds of communication.

Securely testing that N is a product of k£ primes for some fixed k > 3 seems to be harder. Our
results apply when £ = 4 (indeed Theorem 4.2 remains true in this case). For k > 4 more complex
algorithms are necessary. This extension may not be of significant interest since it is not well motivated
and requires complex protocols.

Another natural question is whether only two parties can generate a product of three primes with
an unknown factorization. The answer appears to be yes although the protocols cannot be information
theoretically secure. Essentially one needs to replace the BGW protocol for computing NV with a two-
party private multiplication protocol. This appears to be possible using results of [6, 3].

6 Conclusions and open problems

Our main contribution is the design of a probabilistic primality test that enables three (or more)
parties to generate a number N with an unknown factorization and test that NV is the product of three
distinct primes. The correctness of our primality test relies on the fact that we simultaneously work in
two different subgroups of Z y[z]/(2% + 1)*, namely Z%, and the projective line over Zy. Our protocol
generalizes to an arbitrary number of parties k and achieves L%J privacy — the best possible in an
information theoretic setting.

Recall that our primality test can be applied to N = pgr whenever p = ¢ = v = 3 mod 4. We
note that simple modifications enable one to apply the test when p = ¢ = r = 1 mod 4 (essentially
this is done by reversing the roles of Z%, and the twisted group). However, it seems that one of these
restrictions is necessary. We do not know how to carry out the test without the assumption that
p = q = r mod 4. The assumption plays a crucial role in the proof of Lemma 4.3.

A natural question is whether more advanced primality testing techniques can be used to improve
the efficiency of our test. For instance, recent elegant techniques due to Grantham [11] may be
applicable in our scenario as well.
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