
Generating a Product of Three Primes Withan Unknown FactorizationDan Boneh Jeremy Horwitzdabo@cs.stanford.edu horwitz@cs.stanford.eduComputer Science Department,Stanford University,Stanford, CA, 94305-9045AbstractWe describe protocols for three or more parties to jointly generate a composite N = pqr which isthe product of three primes. After our protocols terminate N is publicly known, but neither partyknows the factorization ofN . Our protocols require the design of a new type of distributed primalitytest for testing that a given number is a product of three primes. We explain the cryptographicmotivation and origin of this problem.1 IntroductionIn this paper, we describe how three (or more) parties can jointly generate an integer N which is theproduct of three prime number N = pqr. At the end of our protocol the product N is publicly known,but neither party knows the factorization of N . Our main contribution is a new type of probabilisticprimality test that enables the three parties to jointly test that an integer N is the product of threeprimes without revealing the factorization of N . Our primality test simultaneously uses two groups:the group Z�N and the projective line over ZN.The main motivation for this problem comes from cryptography, speci�cally the sharing of anRSA key. Consider classical RSA: N = pq is a public modulus, e is a public exponent and d is secretwhere de = 1 mod '(N). At a high level a digital signature of a message M is obtained by computingMd mod N . In some cases the secret key d is highly sensitive (e.g. the secret key of a Certi�cationAuthority) and it is desirable to avoid storing it at a single location. Splitting the key d into a numberof pieces and storing each piece at a di�erent location avoids this single point of failure. One approach(due to Frenkel [8]) is to pick three random numbers satisfying d = d1 + d2 + d3 mod '(N) and storeeach of the shares d1; d2; d3 at one of three di�erent sites. To generate a signature of a message Msite i computes Si = Mdi mod N for i = 1; 2; 3 and sends the result to a combiner. The combinermultiplies the Si and obtains the signature S = S1S2S3 = Md mod N . If one or two of the sites arebroken into, no information about the private key is revealed. An important property of this schemeis that it produces standard RSA signatures { the user receiving the signature is totally unaware ofthe extra precautions taken in protecting the private key. Note that during signature generation thesecret key is never reconstructed at a single location.To provide fault tolerance one slightly modi�es the above technique to enable any two of the threesites to generate a signature. This way if one of the sites is temporarily unavailable the Certi�cation1



Authority can still generate signatures using the remaining two sites. If the key was only distributedamong two sites the system would be highly vulnerable to faults.We point out that classic techniques of secret sharing [15] are inadequate in this scenario. Secretsharing requires one to reconstruct the secret at a single location before it can be used, hence intro-ducing a single point of failure. The technique described above of sharing the secret key such that itcan be used without reconstruction at a single location is known as Threshold Cryptography. See [10]for a succinct survey of these ideas and nontrivial problems associated with them.An important question left out of the above discussion is key generation. Who generates the RSAmodulusN and the shares d1; d2; d3? Previously the answer was a trusted dealer would generate N anddistribute the shares d1; d2; d3 to the three sites. Clearly this solution is undesirable since it introducesa new single point of failure { the trusted dealer. It knows the factorization of N and the secret key d.If it is compromised the secret key is revealed. Recently Boneh and Franklin [2] designed a protocolthat enables three (or more) parties to jointly generate an RSA modulus N = pq and shares d1; d2; d3of a private key. At the end of the protocol the parties are assured that N is indeed the product oftwo large primes however non of them know its factorization. In addition each party learns exactlyone of d1; d2; d3 and has no computational information about the other shares. Thus, there is no needfor a trusted dealer. We note that Cocks [6] introduced a heuristic protocol enabling two parties togenerate a shared RSA key.In this paper we design an e�cient protocol enabling three (or more) parties to generate a modulusN = pqr such that neither party knows the factorization of N . Once N is generated the sametechniques used in [2] can be used to generate shares d1; d2; d3 of a private exponent. For this reasonthroughout the paper we focus on the generation of the modulus N = pqr and ignore the generation ofthe private key. The methods of [2] do not generalize to generate a modulus with three prime factorsand new techniques had to be developed for this purpose.We remark that techniques of secure circuit evaluation [1, 5, 17] can also be used to solve thisproblem. However, these protocols are mostly theoretical resulting in extremely ine�cient algorithms.2 MotivationThe problem discussed in the paper is a natural one and thus our solution is of independent inter-est. Nonetheless, the problem is well motivated by a method for improving the e�ciency of sharedgeneration of RSA keys. To understand this we must brie
y recall the method used by Boneh andFranklin [2]. We refer to the three parties involved as Alice, Bob and Carol. At a high level to generatea modulus N = pq the protocol works as follows:Step 1 Alice picks two random n bit integers pa; qa, Bob picks two random n bit integers pb; qb andCarol picks two random n bit integers pc; qc. They keep these values secret.Step 2 Using a private distributed computation they compute the valueN = (pa + pb + pc)(qa + qb + qc)At the end of the computation N is publicly available however no other information about theprivate shares is revealed. This last statement is provable in an information theoretic sense.Step 3 The three parties perform a distributed primality test to test that N is the product of exactlytwo primes. As before, this step provably reveals no information about the private shares.2



Step (3), the distributed primality test, is a new type of probabilistic primality test which is one ofthe main contributions of [2]. Step (2) is achieved using an e�cient variation of the BGW [1] protocol.A drawback of the above approach is that both factors of N are simultaneously tested for primality.Hence, the expected number of times step (3) is executed is O(n2). This is much worse than singleuser generation of N where the two primes are �rst generated separately by testing O(n) candidatesand then multiplied together. When generating a 1024 bit modulus this results in signi�cant slowdownwhen compared with single user generation.To combat this quadratic slowdown one may try the following alternate approach.Step 1 Alice picks a random n bit prime p and a random n bit integer ra. Bob picks a random n bitprime q and a random n bit integer rb. Carol picks a random n bit integer rc. They keep thesevalues secret.Step 2 Using a private distributed computation they compute the valueN = pq(ra + rb + rc)At the end of the computation N is publicly available however no other information about theprivate shares is revealed.Step 3 The three parties use the results of this paper to test that N is the product of exactly threeprimes. This step provably reveals no information about the private shares.At the end of the protocol neither party knows the full factorization ofN . In addition, this approachdoes not su�er from the quadratic slowdown observed in the previous method. Consequently, it isfaster by roughly a factor of 50 (after taking e�ects of trial division into account). As before, step (2)is carried out by an e�cient variant of the BGW protocol.Instead of solving the speci�c problem of testing that N = pq(ra + rb + rc) is a product of threeprimes we solve the more general problem of testing thatN = (pa + pb + pc)(qa + qb + qc)(ra + rb + rc)is a product of three primes without revealing any information about the private shares. This primalitytest is the main topic of this paper.For the sake of completeness we point out that in standard single party cryptography there areseveral advantages to using an RSA modulus N = pqr rather than the usual N = pq (the size ofthe modulus is the same in both cases). First, signature generation is much faster using the ChineseRemainder Theorem (CRT). When computing Md mod N one only computes Md mod p�1 mod p forall three factors. Since the numbers (and exponents) are smaller signature generation is about twiceas fast as using CRT with N = pq. Another advantage is that an attack on RSA due to Wiener [16]becomes less e�ective when using N = pqr. Wiener showed that for N = pq if d < N1=4 one canrecover the secret key d from the public key. When N = pqr the attack is reduced to d < N1=6 andhence it may be possible to use smaller values of d as the secret key. Finally, we note that the fastestfactoring methods [13] cannot take advantage of the fact that the factors of N = pqr are smaller thanthose of a standard RSA modulus N = pq.
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3 PreliminariesIn this section, we explain the initial setup for our new probabilistic primality test and how it isobtained. We then explain a basic protocol which we use in the later parts of the paper. At �rst readingthe reader may wish to skip to Section 4 and take on faith that the necessary setup is attainable.3.1 Communication and privacy modelThe communication and privacy model assumed by our protocol are as follows:Full connectivity Any party can communication with any other party. This is a typical setup on alocal network or the Internet.Private and authenticated channels Messages sent from party A to party B are private and can-not be tampered with en route. This simply states that A and B share a secret key which theycan use for encryption and authentications.Honest parties We assume all parties are honestly following the protocol. This is indeed the casewhen they are truly trying to create a shared key. This assumption is used by both [2] and [6].We note that some recent work [9] makes the protocol of [2] robust against cheating adversariesat the cost of some slowdown in performance (roughly a factor of 100). These robustness resultsapply to the protocols described in this paper as well.Collusion Our protocol is 1-private. That is to say that a single party learns no information aboutthe factorization of N = pqr. However, if two of the three parties collude they can recoverthe factors. For three parties this is �ne since our goal is to enable two-out-of-three signaturegeneration. Hence, two parties are always jointly able to recover the secret key. More generally,when k parties participate in our primality test protocol one can achieve bk�12 c privacy. Thatis, any minority of parties learns no information about the factors of N .3.2 Generations of NIn the previous section we explained that Alice, Bob and Carol generate N asN = (pa + pb + pc)(qa + qb + qc)(ra + rb + rc)where party i knows pi; qi; ri for i = a; b; c and keeps these shares secret while making N publiclyavailable. To compute N without revealing any other information about the private shares we usethe BGW protocol [1]. For the particular function above the protocol is quite e�cient requiring threerounds of communication and a total of 6 messages. The protocol is information theoretically secure,i.e. other than the value of N party i has no information about the shares held by other parties. Thisis to say the protocol is 1�private.We do not go into the details of how the BGW protocol is used to compute N since it is tangentialto the topic of this paper | testing that N is a product of three distinct primes. For our purpose itsu�ces to assume N is public while the private shares are kept secret.An important point is that our primality test can only be applied when pa+pb+pc = qa+qb+qc =ra+ rb+ rc = 3 mod 4. Hence, the parties must coordinate the two lower bits of their shares ahead oftime so that the sums are indeed 3 modulo 4. Indeed, this means that a priori each party knows thetwo least signi�cant bits of the other's shares. 4



3.3 Sharing of (p� 1)(q � 1)(r � 1) and (p+ 1)(q + 1)(r + 1)Let p = pa + pb + pc; q = qa + qb + qc and r = ra + rb + rc. We de�ne '̂ = (p � 1)(q � 1)(r � 1).Since p; q; r are not necessarily prime '̂ may not equal '(N). Our protocol requires that the value '̂be shared additively among the three parties. That is, '̂ = 'a + 'b +'c where only party i knows 'ifor i = a; b; c.An additive sharing of '̂ is achieved by observing that '̂ = N � pq � pr � qr + p+ q + r � 1. Toshare '̂ it su�ces to represent pq + pr + qr using an additive sharing A + B + C among the threeparties. The additive sharing of '̂ is then'a = N �A+ pa + qa + ra � 1 ; 'b = �B + pb + qb + rb ; 'c = �C + pc + qc + rcThe conversion of pq+pr+ qr into an additive sharing A+B+C is carried out using a simple variantof the BGW protocol used in the computation of N . The BGW protocol can be used to computethe value pq; however, instead of making the �nal result public the BGW variant shares the resultadditively among the three parties. The details of this variant can be found in [2, Section 6.2].As before, we do not give the full details of the protocol for converting pq+pr+qr into an additivesharing. Since we wish to focus on the primality test it su�ces to assume that an additive sharing of'̂ is available in the form of 'a + 'b + 'c.In addition to a sharing of '̂ we also require an additive sharing of  ̂ = (p+1)(q+1)(r+1). Oncean additive sharing of pq+pr+ qr is available it is trivial to generate an additive sharing of  ̂. Simplyset  a = N +A+ pa + qa + ra + 1 ;  b = B + pb + qb + rb ;  c = C + pc + qc + rc3.4 Comparison protocolOur primality test makes use of what we call a comparison protocol. Let A be a value known to Alice,B a value known to Bob and C a value known to Carol. We may assume A;B;C 2 Z�N. The protocolenables the three parties to test that ABC = 1 mod N without revealing any other information aboutthe product ABC. We give the full details of the protocol in this section.Let P > N be some prime known to all parties. The protocol proceeds as follows:Step 1. Carol picks a random element C1 2 Z�N and sets C2 = CC�11 mod N . Clearly C = C1C2 modN . Carol then sends C1 to Alice and C2 to Bob.Step 2. Alice sets A0 = AC1 and Bob sets B0 = (BC2)�1 mod N . Both values A0 and B0 can beviewed as integers in the range [0; N). The problem is now reduced to testing whether A0 = B0(as integers) without revealing any other information about A and B.Step 3. Alice picks a random c 2 Z�P and d 2 ZP . She sends c; d to Bob. Alice then computesh(A0) = cA0 + d mod P and sends the result to Carol. Bob computes h(B0) = cB0 + d mod Pand sends the result to Carol.Step 4. Carol tests if h(A0) = h(B0) mod P . If so, she announces that ABC = 1 mod N . Otherwiseshe announces ABC 6= 1 mod N .The correctness and privacy of the protocol are stated in the next two lemmas. Correctness iselementary and is stated without proof. 5



Lemma 3.1 Let A;B;C 2 Z�N . At the end of the protocol the parties correctly determine if ABC =1 mod N or ABC 6= 1 mod N .Lemma 3.2 The protocol is 1�private. That is, other than the result of the test each party learns noother information.Proof To prove the protocol is 1�private we provide a simulation argument for each party's view ofthe protocol. Alice's view of the protocol is made up of the values A;C1; c; d; h(A0) and the �nal resultof the test. These values can be easily simulated by picking C1 at random in Z�N, picking c at randomin Z�P and d at random in ZP . This is a perfect simulation of Alice's view. A simulation argument forBob is essentially the same.Simulating Carol's view is more interesting. Carol's view consists of C;C1; C2; h(A0); h(B0) andthe result of the test. The point is that h(A0) and h(B0) reveal no information about A and B sincethey are either equal, or random independent elements of ZP . Which of the two is determined by theresult of the test. The independence follows since the family of hash functions h(x) = cx + d mod Pis a universal family of hash functions (i.e. not knowing c; d the values h(x); h(y) are independent forany x; y 2 ZP).To simulate Carol's view the simulator picks C1; C2 2 Z�N at random so that C = C1C2 mod N .Then depending on the results of the test it either picks the same random element of ZP twice orpicks two random independent elements of ZP . This is a perfect simulation of Carol's view. Thisproves Carol gains no extra information from the protocol since given the outcome of the test, she cangenerate the values sent by Alice and Bob herself. �4 The probabilistic primality testWe now describe the main primality test. As discussed in the previous section our primality testapplies once the following setup is achieved:Shares Each party i has three secret n-bit values pi; qi; ri for i = a; b; c.The modulus N = (pa + pb + pc)(qa + qb + qc)(ra + rb + rc) is public. We set p = pa + pb + pc; q =qa+qb+qc and r = ra+rb+rc. Throughout the section we are assuming that p = q = r = 3 mod 4.Thus, the parties must a priori coordinate the two least signi�cant bits of their shares so thatthis condition holds.Sharing '̂;  ̂: The parties share (p � 1)(q � 1)(r � 1) as 'a + 'b + 'c and (p + 1)(q + 1)(r + 1) as a +  b +  c.Given this setup they wish to test that p; q and r are distinct primes without revealing p; q; r. At thispoint nothing is known about p; q; r other than p = q = r = 3 mod 4. Throughout the section we usethe following notation: '̂ = 'a + 'b + 'c = (p� 1)(q � 1)(r � 1) ̂ =  a +  b +  c = (p+ 1)(q + 1)(r + 1)Clearly if N is a product of three distinct primes then '(N) = '̂. Otherwise, this equality may nothold. 6



Our primality test is made up of four steps. We �rst state what each step tests for and in thesubsequent subsections explain how each step is carried out without revealing any information aboutthe factors of N .Step 1 The parties pick a random g 2 Z�N and jointly test that g'a+'b+'c = 1 mod N . If the testfails N is rejected. This step reveals no information other than the outcome of the test. Werefer to this step as a Fermat test in Z�N.Step 2 The parties perform a Fermat test in the twisted group TN = (ZN[x]=(x2+1))�=Z�N. Elementsof this group can be viewed as points on the projective line over ZN. If N is the product of threedistinct primes then the order of TN is (p+1)(q+1)(r+1). Indeed, x2+1 is irreducible moduloN since p = q = r = 3 mod 4. To carry out the Fermat test in TN the parties pick a randomg 2 TN and jointly test that g a+ b+ c = 1. If the test fails N is rejected. This step reveals noinformation other than the outcome of the test.Step 3 The parties jointly test that N is the product of at most three prime powers. The implemen-tation of this step is explained in the next subsection. If the test fails N is rejected.Step 4 The parties jointly test that gcd(N; p+ q + r) = 1This step reveals no information other than the outcome of the test. The implementation of thisstep is explained in the subsection 4.3. If the test fails N is rejected. Otherwise N is acceptedas the product of three primes.The following fact about the twisted group TN = (ZN[x]=(x2 + 1))�=Z�N is helpful in the proof ofthe primality test.Fact 4.1 Let N be an integer and k2jN with k prime. Then k divides both '(N) and jTN j.Proof Let � � 2 be the number of times k divides N , i.e. N = k�w where gcd(k;w) = 1. Then'(N) = k��1(k � 1)'(w) and hence k divides '(N).To see that k divides jTN j note that TN �= Tk� � Tw . When k = 3 mod 4 we know that x2 + 1 isirreducible in Zk and hence jTk� j = k��1(k + 1). It follows that k divides jTN j. When k = 1 mod 4we have jTk� j = k��1(k � 1) and therefore again k divides jTN j. �We can now prove that the above four steps are indeed a probabilistic test for proving that N isa product of three primes.Theorem 4.2 Let N = pqr = (pa+ pb+ pc)(qa+ qb+ qc)(ra+ rb+ rc) where p = q = r = 3 mod 4 andgcd(N; p+ q+ r) = 1. If N is a product of three primes it is always accepted. Otherwise, N is rejectedwith probability at least half. The probability is over the random choices made in steps 1{4 above.Proof Suppose p; q and r are distinct primes. Then steps (1),(2) and (3) clearly succeed. Step (4)succeeds by assumption on N . Hence, in this case N always passes the test as required.Suppose N is not the product of three distinct primes. Assume for a contradiction that N passesall four steps with probability greater than 1=2. Since N passes step (3) with probability greater than1=2 we know that N = z�11 z�22 z�33 for three primes z1; z2; z3 (not necessarily distinct). Since N passesstep (4) we know gcd(N; p+ q + r) = 1. De�ne the following two groups:G = �g 2 Z�N s.t. g'a+'b+'c = 1	H = ng 2 TN s.t. g a+ b+ c = 1o7



Clearly G is a subgroup of Z�N and H is a subgroup of the twisted group TN . We show that at leastone of G or H is a proper subgroup which will prove that either steps (1) or (2) fails with probabilityat least 1=2. There are two cases to consider.Case 1: p, q, and r are not pairwise relatively prime. By symmetry we may assume, without loss ofgenerality, that gcd(p; q) > 1. Let k be a prime factor of gcd(p; q). Recall that N is odd so k > 2(since k divides N).Since N = pqr we know that k2jN . Hence, by Fact 4.1, kj'(N) and kjjTN j. We claim thateither k doesn't divide '̂ or k doesn't divide  ̂. To see this observe that if kj'̂ and kj ̂, then kdivides  ̂� '̂ = p(2q+2r)+ q(2r)+2. Since k divides both p and q we conclude that kj2, whichcontradicts k > 2.First we examine when k doesn't divide '̂. Since k is a prime factor of '(N) there exists anelement g 2 Z�N of order k. However, since k does not divide '̂ we know that g'̂ 6= 1. Hence,g 62 G proving that G is a proper subgroup of Z�N. If k doesn't divide  ̂ a similar argumentproves that H is a proper subgroup of the twisted group TN .Case 2: p, q, and r are pairwise relatively prime. We can write p = z�1 ; q = z�2 and r = z
3 withz1; z2; z3 distinct primes. By assumption we know that one of �; �; 
 is greater than 1. Withoutloss of generality we may assume � > 1.We �rst observe that none of the zi can divide gcd('̂;  ̂). Indeed, if if this were not the casethen zij'̂ +  ̂ = 2(N + p + q + r). But then, since zi divides N it must also divide p + q + rcontradicting the fact that gcd(N; p+ q + r) = 1 as tested in step (4).We now know that z1 does not divide '̂ or it does not divide  ̂. However, since z21 divides N weobtain, by Fact 4.1, that z1j'(N) and z1jjTN j. We can now proceed as in case (1) to prove thateither G is a proper subgroup of Z�N or H is a proper subgroup of TN . �Clearly most integers N that are not a product of three primes will already fail step (1) of thetest. Hence, steps (2{4) are most likely executed only once a good candidate N is found.The condition gcd(N; p + q + r) = 1 is necessary. Without it the theorem is false as can be seenfrom the following simple example: p = p31 ; q = ap21 + 1 ; r = bp21 � 1 where p1; q; r are three oddprimes with p = q = r = 3 mod 4. In this case N = pqr will always pass steps 1{3 even though it isnot a product of three distinct primes.4.1 Step 3: Testing that N = p�q�r
Our protocol for testing that N is a product of three prime powers borrows from a result of van deGraaf and Peralta [12]. Our protocol works as follows:Step 0 By de�nition of '̂ we know it is divisible by 8. However, the individual shares 'a; 'b; 'c whichsum to '̂ may not be. To correct this Alice generates two random numbers a1; a2 2 Z8 such thata1 + a2 = 'a mod 8. She sends a1 to Bob and a2 to Carol. Alice sets 'a  'a � a1 � a2, Bobsets 'b  'b + a1 and Carol set 'c  'c + a2. Observe that at this point'̂8 = 'a8 + j'b8 k+ l'c8 m8



Step 1 The parties �rst agree on eight random numbers g1; : : : ; g8 in Z�N, all with Jacobi symbol +1.Step 2 For i; j = 1; : : : ; 8 we say that i is equivalent to j if� gigj�'a+'b+'c8 = 1 (mod N)Since all three parties know gi and gj they can test if i is equivalent to j as follows:1. Alice computes A = (gi=gj)'a=8 mod N ,Bob computes B = (gi=gj)b'b=8c mod N andCarol computes C = (gi=gj)d'c=8e mod N .2. Using the comparison protocol of section 3.4 they then test if ABC = 1 mod N . Thecomparison protocol reveals no information other than whether ABC = 1 mod N or not.Step 3 If the number of equivalence classes is greater than four N is rejected. Otherwise N isaccepted.Testing that the number of equivalences classes is at most four requires at most 22 invocationsof the comparison protocol in the worst case. The reason for restricting attention to elements gi ofJacobi symbol +1 is e�ciency. Without this restriction the number of equivalence classes to check foris eight. Thus, many more applications of the comparison protocol are necessary.The following lemma shows that when N is a product of three distinct primes it is always accepted.When N has more than three prime factors it is rejected with probability at least 1=2. If N is a productof three prime powers it may always be accepted by this protocol. We use the following notation:J = fg 2 Z�N s.t. � gN � = +1gQ = fg 2 J s.t. g is a quadratic residue in Z�NgThe index of Q in J is 2d(N)�1 or 2d(N) where d(N) is the number of distinct prime factors of N .Lemma 4.3 Let N = pqr be an integer with p = q = r = 3 mod 4. If p; q; r are distinct primes thenN is always accepted. If the number of distinct prime factors of N is greater than three then N isrejected with probability at least 12 .Proof If N is the product of three distinct primes then the index of Q in J is four. Two elementsg1; g2 2 Z�N belong to the same coset of Q in J if and only if g1=g2 is a quadratic residue, i.e. if andonly if (g1=g2)'(N)=8 = 1 mod N . Since in this case '(N) = '̂ = 'a + 'b + 'c step (2) tests if gi andgj are in the same coset of Q. Since the number of cosets is four there are exactly four equivalenceclasses and thus N is always accepted.If N contains at least four distinct prime factors we show that it is rejected with probability atleast 1=2. De�ne Q̂ = ng 2 J s.t. g'̂=8 = 1 (mod N)oSince in this case '̂ may not equal '(N) the group Q̂ is not the same as the group Q.We show that the index of Q̂ in J is at least eight. Since p = q = r = 3 mod 4 we know that '̂=8is odd (since '̂ = (p � 1)(q � 1)(r � 1) ). If g 2 J satis�es gx = 1 for some odd x then g must be a9



quadratic residue (it's root is g(x+1)=2). Hence, Q̂ � Q and hence is a subgroup of Q. Since the indexof Q in J is at least eight it follows that the index of Q̂ in J is at least eight.It remains to show that when the index of Q̂ in J is at least eight then N is rejected with probabilityat least 1=2. In step (2) two elements g1; g2 2 J are equivalent if they belong to the same coset of Q̂in J . Let R be the event that all 8 elements gi 2 J chosen randomly in step (1) fall into only four ofthe eight cosets. Then Pr[R] � �84� � �128� = 0:27 < 12N is accepted only when the event R occurs. Since it occurs with probability less than 1=2 the numberN is rejected with probability at least 1=2 as required. �Next we prove that the protocol leaks no information when N is indeed the product of threedistinct primes. In case N is not of this form the protocol may leak some information; however inthis case N is discarded and is of no interest. To prove that the protocol leaks no information werely on a classic cryptographic assumption [4] called Quadratic Residue Indistinguishability or QRI forshort. This cryptographic assumption states that when N = pq with p = q = 3 mod 4 no polynomialtime algorithm can distinguish between the groups J and Q de�ned above. In other words, for anypolynomial time algorithm A and any constant c > 0����Prg2J[A(g) = \yes"]� Prg2Q[A(g) = \yes"]���� < 1(logN)cThe following lemma relies on QRI when N is the product of three primes.Lemma 4.4 If N is a product of three distinct primes then the protocol is 1-private assuming QRI.Proof Sketch To prove that each party learns no information other than the fact that N is a prod-uct of three prime powers we provide a simulation argument. We show that each party can simulateits view of the protocol. Hence, whatever values it receives from its peers, it could have generateditself. By symmetry we may only consider Alice. Alice's view of the protocol consists of the elementsg1; : : : ; g8 and bit values bi;j indicating whether (gi=gj)'̂ = 1. (we already gave a simulation algorithmfor the comparison protocol in Section 3.4). Thus, Alice learns whether gi=gj is a quadratic residue ornot. We argue that under QRI this provides no computational information since it can be simulated.To simulate Alice's view the simulation algorithm works as follows: it picks eight random elementsg1; : : : ; g8 2 J . It then randomly associates with each gi a value in the set f0; 1; 2; 3g. This valuerepresents the coset of Q that gi is in. The simulator then says that gi=gj is a quadratic residue ifand only if the value associates with gi is equal to that associated with gj . Under QRI the result-ing distribution on g1; : : : ; g8; b1;1; : : : ; b8;8 is computationally indistinguishable from Alice's true viewof the protocol. We note that the value a1 2 [0; 8] Alice sends Bob in Step (0) is a uniform randomelement of Z8. Hence, it is trivially simulatable by Bob. Similarly a2 2 [0; 8] is simulatable by Carol. �4.2 Implementing a Fermat test with no information leakageWe brie
y show how to implement a Fermat test in Z�N without leaking any extra information aboutthe private shares. The exact same method works in the twisted group TN as well.To check that g 2 Z�N satis�es g'a+'b+'c = 1 mod N we perform the following steps:10



Step 1 Each party computes Ri = g'i mod N for i = a; b; c.Step 2 They test that RaRbRc = 1 mod N be revealing the values R1; R2; R3. Accept N if the testsucceeds. Otherwise reject.Clearly the protocol succeeds if and only if g'̂ = 1 mod N . We show that it leaks no otherinformation.Lemma 4.5 If N = pqr is the product of three distinct primes then the protocol is 2�private.Proof We show that any two parties learn no information about the private share of the third otherthan g'̂ = 1 mod N . By symmetry we restrict attention to Alice and Bob. Since by assumption Nis the product of three primes we know that g'̂ = 1 mod N . Hence, g'a+'b = g�'c . To simulate thevalue received from Carol the simulation algorithm simply computes g�'c . Indeed, this is a perfectsimulation of Alice and Bob's view. Thus, they learn nothing from Carol's message since they couldhave generated it themselves. �4.3 Step 4: Testing that gcd(N; p+ q + r) = 1 in zero knowledgeOur protocol for this step is based on a protocol similar to the one used in the computation of N . Weproceed as follows:Step 1 Alice picks a random ya 2 ZN . Bob picks a random yb 2 ZN. Carol picks a random yc 2 ZN.Step 2 Using the BGW protocol as in Section 3.2 they computeR = (pa + qa + pb + qb + pc + qc)(ya + yb + yc) mod NAt the end of the protocol R is publicly known, however no other information about the privateshares is revealed.Step 3 Now that R is public the parties test that gcd(R;N) = 1. If not, N is rejected. Otherwise Nis accepted.Lemma 4.6 If N = pqr is the product of three distinct n-bit primes with gcd(N; p+ q + r) = 1 thenN is accepted with probability 1� � for � < 1=2n. Otherwise, N is always rejected.Proof Clearly if gcd(N; p + q + r) > 1 then gcd(R;N) > 1 and therefore N is always rejected. Ifgcd(N; p+ q+ r) = 1 then N is rejected only if gcd(N; ya+yb+yc) > 1. Since ya+yb+yc is a randomelement of ZN this happens with probability less than (1=2)n. �Lemma 4.7 If N = pqr is the product of three distinct n-bit primes with gcd(N; p+ q + r) = 1 thenthe protocol is 1�private.Proof Since the BGW protocol is 1�private the above protocol can be at most 1�private. We showhow to simulate Alice's view. Alice's view consists of her private shares pa; qa; ya and the number R.Since R is independent of her private shares the simulator can simulate Alice's view by simply pickingR in ZN at random. This is a perfect simulation. �
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5 ExtensionsOne can naturally extend our protocols in two ways. First, one may allow more than three parties togenerate a product of three primes with an unknown factorization. Second, one may wish to designprimality tests for testing that N is a product of k primes for some small k. We brie
y discuss bothextensions below.Our protocols easily generalize to allow any number of parties. When k parties are involved theprotocols can be made bk�12 c private. This is optimal in the information theoretic sense and followsfrom the privacy properties of the BGW protocol. The only complexities in this extension are thecomparison protocol of Section 3.4 and Step (0) of Section 4.1. Both protocols generalize to k partieshowever they require a linear (in k) number of rounds of communication.Securely testing that N is a product of k primes for some �xed k > 3 seems to be harder. Ourresults apply when k = 4 (indeed Theorem 4.2 remains true in this case). For k > 4 more complexalgorithms are necessary. This extension may not be of signi�cant interest since it is not well motivatedand requires complex protocols.Another natural question is whether only two parties can generate a product of three primes withan unknown factorization. The answer appears to be yes although the protocols cannot be informationtheoretically secure. Essentially one needs to replace the BGW protocol for computing N with a two-party private multiplication protocol. This appears to be possible using results of [6, 3].6 Conclusions and open problemsOur main contribution is the design of a probabilistic primality test that enables three (or more)parties to generate a number N with an unknown factorization and test that N is the product of threedistinct primes. The correctness of our primality test relies on the fact that we simultaneously work intwo di�erent subgroups of ZN[x]=(x2 +1)�, namely Z�N and the projective line over ZN. Our protocolgeneralizes to an arbitrary number of parties k and achieves bk�12 c privacy { the best possible in aninformation theoretic setting.Recall that our primality test can be applied to N = pqr whenever p = q = r = 3 mod 4. Wenote that simple modi�cations enable one to apply the test when p = q = r = 1 mod 4 (essentiallythis is done by reversing the roles of Z�N and the twisted group). However, it seems that one of theserestrictions is necessary. We do not know how to carry out the test without the assumption thatp = q = r mod 4. The assumption plays a crucial role in the proof of Lemma 4.3.A natural question is whether more advanced primality testing techniques can be used to improvethe e�ciency of our test. For instance, recent elegant techniques due to Grantham [11] may beapplicable in our scenario as well.References[1] M. Ben-Or, S. Goldwasser, A. Wigderson, \Completeness theorems for non-cryptographicfault tolerant distributed computation", STOC 1988, pp. 1{10.[2] D. Boneh, M. Franklin, \E�cient generation of shared RSA keys", in Proceedings Crypto'97, pp. 425{439. 12
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