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Abstract

We survey four variants of RSA designed to speed up RSA decryption and signing. We only
consider variants that are backwards compatible in the sense that a system using one of these
variants can interoperate with systems using standard RSA.

1 Introduction

RSA [12] is the most widely deployed public key cryptosystem. It is used for securing web traffic,
e-mail, and some wireless devices. Since RSA is based on arithmetic modulo large numbers it can
be slow in constrained environments. For example, 1024-bit RSA decryption on a small handheld
device such as the PalmPilot III can take as long as 30 seconds. Similarly, on a heavily loaded web
server, RSA decryption significantly reduces the number of SSL requests per second that the server
can handle. Typically, one improves RSA’s performance using special-purpose hardware. Current
RSA coprocessors can perform as many as 10,000 RSA decryptions per second (using a 1024-bit
modulus) and even faster processors are coming out.

In this paper we survey four simple variants of RSA that are designed to speed up RSA de-
cryption in software. We emphasize backwards compatibility: A system using one of these variants
for fast RSA decryption should be able to interoperate with systems that are built for standard
RSA. Moreover, existing Certificate Authorities must be able to respond to a certificate request for
a variant-RSA public key.

We begin the paper with a brief review of RSA. We then describe the following variants for
speeding up RSA decryption:

• Batch RSA [8]: do a number of RSA decryptions for approximately the cost of one.

• Multi-factor RSA [7, 14]: use a a modulus of the form N = pqr or N = p2q.

• Rebalanced RSA [16]: speed up RSA decryption by shifting most of the work to the encrypter.

The security of these variants is an open research problem. We cannot show that an attack on
these variants would imply an attack on the standardized version of RSA (as described, e.g., in
ANSI X9.31). Therefore, when using these variants, one can only rely on the fact that so far none
of them has been shown to be weak.

The RSA trapdoor permutation is used for both public key encryption and digital signatures.
Since the exact application of RSA is orthogonal to the discussion in this paper we use terminology
consistent with the application to public key encryption. All the RSA variants we discuss apply
equally well to digital signatures, where they speed up RSA signing.
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1.1 Review of the basic RSA system

We review the basic RSA public key system and refer to [10] for more information. We describe
three constituent algorithms: key generation, encryption, and decryption.

Key generation: The key generation algorithm takes a security parameter n as input. Through-
out the paper we use n = 1024 as the standard security parameter. The algorithm generates two
(n/2)-bit primes, p and q, and sets N ← pq. Next, it picks some small value e that is relatively
prime to ϕ(N) = (p − 1)(q − 1). The value e is called the encryption exponent, and is usually
chosen as e = 65537. The RSA public key consists of the two integers 〈N, e〉. The RSA private
key is an integer d satisfying e · d = 1 mod ϕ(N). Typically, one sends the public key 〈N, e〉 to a
Certificate Authority (CA) to obtain a certificate for it.

Encryption: To encrypt a message X using an RSA public key 〈N, e〉, one first formats the bit-
string X to obtain an integer M in ZN = {0, . . . , N − 1}. This formatting is often done using the
PKCS #1 standard [1, 9]. The ciphertext is then computed as C ← M e mod N . (Other methods
for formatting X prior to encryption are described elsewhere in this issue.)

Decryption: To decrypt a ciphertext C the decrypter uses its private key d to compute an e’th
root of C by computing M ← Cd mod N . Since both d and N are large numbers (each approxi-
mately n bits long) this is a lengthy computation for the decrypter. The formatting operation from
the encryption algorithm is then reversed to obtain the original bit-string X from M . Note that d
must be a large number (on the order of N) since otherwise the RSA system is insecure [3, 16].

It is standard practice to employ the Chinese Remainder Theorem (CRT) for RSA decryption.
Rather than compute M ← Cd (mod N), one evaluates:

Mp ← C
dp
p (mod p) Mq ← C

dq
q (mod q)

Here dp = d mod p− 1 and dq = d mod q− 1. Then one uses the CRT to calculate M from Mp and
Mq. This is approximately four times as fast as evaluating Cd mod N directly [10, p. 613].

2 Batch RSA

Fiat [8] observed that, when using small public exponents e1 and e2 for the same modulus N , it is
possible to decrypt two ciphertexts for approximately the price of one. Suppose C1 is a ciphertext
obtained by encrypting some M1 using the public key 〈N, 3〉, and C2 is a ciphertext for some M2

using 〈N, 5〉. To decrypt, we must compute C1/3
1 and C

1/5
2 mod N . Fiat observed that by setting

A = (C5
1 · C3

2 )1/15 we obtain:

C
1/3
1 =

A10

C3
1 · C2

2

and C
1/5
2 =

A6

C2
1 · C2

(1)

Hence, at the cost of computing a single 15th root and some additional arithmetic, we are able to
decrypt both C1 and C2. Computing a 15th root takes the same time as a single RSA decryption.

This batching technique is only worthwhile when the public exponents e1 and e2 are small
(e.g., 3 and 5). Otherwise, the extra arithmetic required is too expensive. Also, one can only
batch-decrypt ciphertexts encrypted using the same modulus and distinct public exponents. This
is essential — it is known [13, Appendix A] that one cannot apply such algebraic techniques to
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batch the decryption of two ciphertexts encrypted with the same public key (e.g., we cannot batch
compute C1/3

1 and C
1/3
2 ).

Fiat generalized the above observation to the decryption of a batch of b RSA ciphertexts.
We have b pairwise relatively prime public keys e1, . . . , eb, all sharing a common modulus N .
Furthermore, we have b encrypted messages C1, . . . , Cb, where Ci is encrypted using the exponent
ei. We wish to compute Mi = C

1/ei
i for i = 1, . . . , b. Fiat describes this b-batch process using

a binary tree. For small values of b (b ≤ 8), one can use a direct generalization of (1). One
sets e ←

∏
i ei, and A0 ←

∏
iC

e/ei
i (where the indices range over 1, . . . , b). Then one calculates

A← A
1/e
0 =

∏b
i=1C

1/ei
i . For each i one computes Mi as:

Mi = C
1/ei
i =

Aαi

C
(αi−1)/ei
i ·

∏
j 6=iC

αi/ej
j

where αi =
{

1 mod ei
0 mod ej (for j 6= i)

(2)

This b-batch requires b modular inversions where as Fiat’s tree based method requires 2b mod-
ular inversions, but fewer auxiliary multiplications. Note that since b and the ei’s are small the
exponents in Equation (2) are also small.

2.1 Improving the performance of batch RSA

In [13] the authors show how to use batch RSA within the Apache web server to improve the
performance of the SSL handshake. This requires changing the web server architecture. They also
describe several natural improvements to batch RSA. We mention a few of these improvements
here.
Batch division: Modular inversion is much slower than modular multiplication. Using a trick

due to Montgomery we compute all b inversions in the batch algorithm for the cost of a single
inversion and a few more multiplications. The idea is to invert x and y by computing α← (xy)−1

and setting x−1 ← y ·α and y−1 ← x ·α. Thus we obtain the inverses of both x and y at the cost
of a single modular inversion and three multiplications. More generally, we use the following
fact [6, p. 481]:
Fact. Let x1, . . . , xn be elements of ZN . All n inverses x−1

1 , . . . , x−1
n can be obtained at the cost

of one inversion and 3n multiplications.
Consequently, only a single modular inversion is required for the entire batching procedure.

Global Chinese Remainder: In Section 1.1 we mentioned that RSA decryption uses the CRT
to speed up the computation of Cd mod N . This idea extends naturally to batch decryption.
We run the entire batching algorithm modulo p, and again modulo q, then use the CRT on each
of the b pairs 〈C1/ei

i mod p, C1/ei
i mod q〉 to obtain the b decryptions Mi = C

1/ei
i mod N .

Simultaneous Multiple Exponentiation: Simultaneous multiple exponentiation [10, §14.6] is a
method for calculating au·bv mod m without first evaluating au and bv. It requires approximately
as many multiplications as does a single exponentiation with the larger of u or v as exponent.
Such products of exponents are a large part of the batching algorithm. Simultaneous multiple
exponentiation cuts the time required to perform them by close to 30%.

2.2 Performance of batch RSA

Table 1 lists the running time for stand-alone batch-RSA decryption, using OpenSSL 0.9.5 on a
machine with a 750 MHz Pentium III and 256 MB RAM, running Debian Linux. In all experiments,
the smallest possible values for the encryption exponents ei were used.
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batch key size
size 768 1024 2048

(unbatched) 4.67 8.38 52.96
2 3.09 5.27 29.43
4 1.93 3.18 16.41
8 1.55 2.42 10.81

Table 1: RSA decryption time, in milliseconds, as a function of batch and key size

With standard 1024-bit keys, batching improves performance significantly. With b = 4, RSA
decryption is accelerated by a factor of 2.6; with b = 8, by a factor of almost 3.5. Note that a batch
size of more than eight is probably not useful for common applications, since waiting for many
decryption requests to be queued can significantly increase latency.

batch Server load
size 16 32 48

(unbatched) 105 98 98
2 149 141 134
4 218 201 187
8 274 248 227

Table 2: SSL handshakes per second as a function of batch size. 1024 bit keys.

We also mention batch-RSA performance as a component of a larger system — a web server
handling SSL traffic. An architecture for such a system is described in [13]. Table 2 gives the number
of full SSL handshakes per second that the batch-RSA web server can handle, when bombarded with
concurrent HTTP HEAD requests by a test client. Here “server load” is the number of simultaneous
connection threads the client makes to the server. Under heavy load, batch RSA can improve the
number of full SSL handshakes per second by a factor of approximately 2.5.

2.3 The Downside of Batch RSA

Batch RSA can lead to a significant improvement in RSA decryption time. Nevertheless, there are
a few difficulties with using the batching technique:
• When using batch RSA, the decryption server must maintain at least as many RSA certificates

as there are distinct keys in a batch. Unfortunately, current Certificate Authorities charge per
certificate issued regardless of the public key in the certificate. Hence, the cost of certificates
might outweigh the benefits in performance.

• For optimal performance, batching requires RSA public keys with very small public exponents
(e = 3, 5, 7, 11, . . . ). There are no known attacks on the resulting system, but RSA as usually
deployed uses a larger public exponent (e = 65537).

3 Multi-factor RSA

The second RSA variant is based on modifying the structure of the RSA modulus. Here there are
two proposals. The first [7] uses a modulus of the form N = pqr. When N is 1024 bits, each prime
is approximately 341 bits. We refer to this as multi-prime RSA. The second proposal [14] uses an
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RSA modulus of the form N = p2q and leads to an even greater speedup. Both methods are fully
backwards compatible since there is no known efficient algorithm to distinguish such RSA public
keys from standard RSA keys (where N = pq).

3.1 Multi-prime RSA: N = pqr

We begin with multi-prime RSA [7]. We describe key generation, encryption, and decryption. We
then discuss the performance of the scheme and analyze its security.

Key generation: The key generation algorithm takes as input a security parameter n and an
additional parameter b. It generates an RSA public/private key pair as follows:
Step 1: Generate b distinct primes p1, . . . , pb each bn/bc-bits long. Set N ←

∏b
i=1 pi. For a 1024-bit

modulus we can use at most b = 3 (i.e., N = pqr), for security reasons discussed below.
Step 2: Pick the same e used in standard RSA public keys, namely e = 65537. Then compute
d = e−1 mod ϕ(N). As usual, we must ensure that e is relatively prime to ϕ(N) =

∏b
i=1(pi−1).

The public key is 〈N, e〉; the private key is d.

Encryption: Given a public key 〈N, e〉, the encrypter encrypts exactly as in standard RSA.

Decryption: Decryption is done using the Chinese Remainder Theorem (CRT). Let ri = d mod
pi − 1. To decrypt a ciphertext C, one first computes Mi = Cri mod pi for each i, 1 ≤ i ≤ b. One
then combines the Mi’s using the CRT to obtain M = Cd mod N . The CRT step takes negligible
time compared to the b exponentiations.

Performance. We compare the decryption work using the above scheme to the work done when
decrypting a normal RSA ciphertext. Recall that standard RSA decryption using CRT requires
two full exponentiations modulo n/2-bit numbers. In multi-prime RSA decryption requires b full
exponentiations modulo n/b bit numbers. Using basic algorithms computing xd mod p takes time
O(log d log2 p). When d is on the order of p the running time is O(log3 p). Therefore, the asymptotic
speedup of multi-prime RSA over standard RSA is simply:

2 · (n/2)3

b · (n/b)3
= b2/4

For 1024-bit RSA, we can use at most b = 3 (i.e., N = pqr), which gives a theoretical speedup of
approximately 2.25 over standard RSA decryption. Our experiments (implemented using the GMP
bignum library) show that in practice we get a speed-up of a factor of 1.73 over standard RSA.

Security. The security of multi-factor RSA depends on the difficulty of factoring integers of the
form N = p1 · · · pb for b > 2. The fastest known factoring algorithm (the number field sieve) cannot
take advantage of this special structure of N . However, one has to make sure that the prime factors
of N do not fall within the range of the Elliptic Curve Method (ECM), which is analyzed in [15].
Currently, 256-bit prime factors are considered within the bounds of ECM, since the work to find
such factors is within range of the work needed for the RSA-512 factoring project [5]. Consequently,
for 1024-bit moduli one should not use more than three factors.
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3.2 Multi-power RSA: N = p2q

One can further speed up RSA decryption using a modulus of the form N = pb−1q where p and q
are n/b bits each [14]. When N is 1024-bits long we can use at most b = 3, i.e., N = p2q. The two
primes p, q are then each 341 bits long.

Key generation: The key generation algorithm takes as input a security parameter n and an
additional parameter b. It generates an RSA public/private key pair as follows:
Step 1: Generate two distinct bn/bc-bit primes, p and q, and compute N ← pb−1 · q.
Step 2: Use the same public exponent e used in standard RSA public keys, namely e = 65537.

Compute d← e−1 mod (p− 1)(q − 1).
Step 3: Compute r1 ← d mod p− 1 and r2 ← d mod q − 1.
The public key is 〈N, e〉; the private key is 〈p, q, r1, r2〉.

Encryption: Same as in standard RSA.

Decryption: To decrypt a ciphertext C using the private key 〈p, q, r1, r2〉 one does:
Step 1: Compute M1 ← Cr1 mod p and M2 ← Cr2 mod q.

Thus M e
1 = C mod p and M e

2 = C mod q.
Step 2: Using Hensel lifting [6, p. 137] construct an M ′1 such that (M ′1)e = C mod pb−1. Hensel

lifting is much faster than a full exponentiation modulo pb−1.
Step 3: Using CRT, compute an M ∈ ZN such that M = M ′1 mod pb−1 and M = M2 mod q. Then
M = Cd mod N is a proper decryption of C.

Performance. We compare the work required to decrypt using multi-power RSA to that required
for standard RSA. For multi-power RSA, decryption takes two full exponentiations modulo (n/b)-
bit numbers, and b− 2 Hensel liftings. Since the Hensel-lifting is much faster than exponentiation,
we focus on the time for the two exponentiations. As noted before, a full exponentiation using
basic modular arithmetic algorithms takes cubic time in the size of the modulus. So, the speedup
of multi-power RSA over standard RSA is approximately:

2 · (n/2)3

2 · (n/b)3
= b3/8

For 1024-bit RSA, b should again be at most three (i.e., N = p2q), giving a theoretical speedup of
about 3.38 over standard RSA decryption. Our experiments (implemented using GMP and taking
e = 65537) show that in practice we get a speed-up by a factor of 2.30 over standard RSA.

Security. The security of multi-power RSA depends on the difficulty of factoring integers of the
form N = pb−1q. As for multi-prime RSA, one has to make sure that the prime factors of N do not
fall within the capabilities of ECM (and the ECM improvement for N = p2q [11]). Consequently,
for 1024-bit moduli one can use at most b = 3, i.e., N = p2q. In addition, we note that the Lattice
Factoring Method (LFM) [4], designed to factor integers of the form N = pu · q for large u, cannot
efficiently factor integers of the form N = p2q when N is 1024 bits long.
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4 Rebalanced RSA

In standard RSA, encryption and signature verification are much faster than decryption and sig-
nature generation. In some applications, one would like to have the reverse behavior. For example,
when a cell phone needs to generate an RSA signature that will be later verified on a fast server one
would like signing to be easier than verifying. Similarly, SSL web browsers (doing RSA encryption)
typically have idle cycles to burn whereas SSL web servers (doing RSA decryption) are overloaded.
In this section we describe a variant of RSA that enables us to rebalance the difficulty of encryption
and decryption: we speed up RSA decryption by shifting the work to the encrypter. This variant
is based on a proposal by Wiener [16] (see also [2]). Note that we cannot simply speedup RSA
decryption by using a small value of d since as soon as d is less than N0.292 RSA is insecure [16, 3].
The trick is to choose d such that d is large (on the order of N), but d mod p− 1 and d mod q − 1
are small numbers. As before, we describe key generation, encryption, and decryption.

Key generation: The key generation algorithm takes two security parameters n and k where
k ≤ n/2. Typically n = 1024 and k = 160. It generates an RSA key as follows:
Step 1: Generate two distinct (n/2)-bit primes p and q with gcd(p−1, q−1) = 2. Compute N ← pq.
Step 2: Pick two random k-bit values r1 and r2 such that

gcd(r1, p− 1) = 1, and gcd(r2, q − 1) = 1, and r1 = r2 mod 2

Step 3: Find a d such that d = r1 mod p− 1 and d = r2 mod q − 1.
Step 4: Compute e← d−1 mod ϕ(N). The public key is 〈N, e〉; the private key is 〈p, q, r1, r2〉.

We need to explain how to find d in Step 3. One usually uses the Chinese Remainder Theorem
(CRT). Unfortunately, p−1 and q−1 are not relatively prime (they are both even) and consequently
the theorem does not apply. However, (p − 1)/2 is relatively prime to (q − 1)/2. Furthermore,
r1 = r2 mod 2. Let a = r1 mod 2. Then using CRT we can find an element d′ such that

d′ =
r1 − a

2
(mod

p− 1
2

) and d′ =
r2 − a

2
(mod

q − 1
2

)

Now, observe that the required d in Step 3 is simply d = 2d′ + a. Indeed, d = r1 mod p − 1 and
d = r2 mod q − 1.

In Step 4, we must justify why d is invertible modulo ϕ(N). Recall that gcd(r1, p − 1) = 1
and gcd(r2, q − 1) = 1. It follows that gcd(d, p − 1) = 1 and gcd(d, q − 1) = 1. Consequently
gcd(d, (p− 1)(q − 1)) = 1. Hence, d is invertible modulo ϕ(N) = (p− 1)(q − 1).

For security reasons described below we take k = 160, although other larger values are accept-
able. Note that e is very large — on the order of N . This is unlike standard RSA, where e typically
equals 65537. All Certificate Authorities we tested were willing to generate certificates for such
RSA public keys.

Encryption: Encryption using the public key 〈N, e〉 is identical to encryption in standard RSA.
The only issue is that since e is much larger than in standard RSA, the encrypter must be willing
to accept such public keys. At the time of this writing all browsers we tested were willing to accept
such keys. The only exception is Microsoft’s Internet Explorer (IE) — IE allows a maximum of 32
bits for e.

7



Decryption: To decrypt a ciphertext C using the private key 〈p, q, r1, r2〉 one does:
Step 1: Compute M1 ← Cr1 mod p and M2 ← Cr2 mod q.
Step 2: Using the CRT compute an M ∈ ZN such that M = M1 mod p and M = M2 mod q. Note

that M = Cd mod N . Hence, the resulting M is a proper decryption of C.

Performance. We compare the work required to decrypt using the above scheme to that required
using standard RSA. Recall that decryption time for standard RSA with CRT is dominated by two
full exponentiations modulo (n/2)-bit numbers. In the scheme presented above, the bulk of the
decryption work is in the two exponentiations in Step 1, but in each of these the exponent is
only k bits long. Since modular exponentiation takes time linear in the exponent’s bit-length,
we get a speedup of (n/2)/k over standard RSA. For a 1024-bit modulus and 160-bit exponent
(k = 160), this gives a theoretical speedup of about 3.20 over standard RSA decryption. Our
experiments (implemented using GMP) show that in practice we get a speed-up by a factor of 3.06
over standard RSA.

Security. It is an open research problem whether RSA using values of d as above is secure. Since
d is large, the usual small-d attacks [16, 3] do not apply. The best known attack on this scheme is
described in the following lemma [2].

Lemma. Let 〈N, e〉 be an RSA public key with N = pq. Let d ∈ Z be the corresponding RSA
private exponent satisfying d = r1 mod p− 1 and d = r2 mod q− 1 with r1 < r2. Then given 〈N, e〉
an adversary can expose the private key d in time O(

√
r1 log r1).

The above attack shows that, to obtain security of 280, we must make both r1 and r2 be at least
160 bits long. Consequently, for security reasons k should not be less than 160.

5 Conclusions

We surveyed four variants of RSA designed to speed up RSA decryption and be backwards-
compatible with standard RSA. Table 3 gives the decryption speedup factors for each of these
variants using a 1024-bit RSA modulus. Batch RSA is fully backwards-compatible, but requires
the decrypter to obtain and manage multiple public keys and certificates. The two multi-factor
RSA techniques are promising in that they are fully backwards compatible. The rebalanced RSA
method gives a large speedup, but only works with peer applications that properly implement
standard RSA, and so are willing to accept RSA certificates with a large encryption-exponent e.
Currently, Internet Explorer rejects all RSA certificates where e is more than 32 bits long. Multi-
factor RSA and rebalanced RSA can be combined to give an additional speedup. All these variants
can take advantage of advances in algorithms for modular arithmetic (e.g., modular multiplication
and exponentiation) on which RSA is built.

Method Speedup Comment
Batch RSA, b = 4 2.64 Requires multiple certificates
Multi-prime, N = pqr 1.73
Multi-power, N = p2q 2.30 e = 65537
Rebalanced, k = 160 3.06 Incompatible with Internet Explorer

Table 3: Comparison of RSA variants. Experimental speedup factors for 1024-bit keys.
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