Discrete Log Based Cryptosystems

Ivan Damgard

November 1, 2004

1 Introduction

This note describes how public-key encryption schemes can be constructed
from finite groups with certain properties, and studies some related compu-
tational problems that must be hard in order for the cryptosystems to be
secure.

2 Preliminaries

Consider the group Z;, where p is a prime. We may think of the prime p
as information that specifies the group Z;, so that we can work with it on a
computer. What we mean by this in general is that knowing the specification

of a group, you can
e compute the order

e write down elements in the group, i.e., represent them on our computer
as bit strings

e compute the group operation and compute inverses

For Z», this is clear: if we know p, we know the order of the group (p — 1),
elements in the group are numbers from 1 to p — 1, and we can multiply and
invert elements modulo p. When in the following, we talk about generating
a group G, this means running some algorithm to obtain the specification of
G. Also, when we say that some algorithm is given G as input, this means
it is given the specification.



Any group Z; is cyclic, i.e., there exists some « - a primitive element, or
generator - such that < a >= Z7. In the following, we wil consider cyclic
groups in general, i.e., we are given the specification of some group G and a
generator a of GG. Throughout, ¢ will be the order of G.

3 Three computational problems
We may now consider the following

The discrete log (DL) problem
Given a group G, generator «, and 3 € (G, find integer a, such that a* = .

The DL problem is in many groups notoriously hard, for instance in Z;.
A related problem is

The Diffie-Hellman (DH) problem
Given a group G, generator a, and a® o’, where a,b are randomly and
independently chosen from Z;, compute a®.

Clearly, if we could find a from a®, we could solve DH by a single expo-
nentiation, so

LEMMA 1 The DH problem is no harder than the DL problem.

It is not known if the opposite direction is true in general, but in some groups,
the problems are equivalent. Note that the DH problem has a peculiar prop-
erty, namely if I give you a group element and I claim it solves a DH instance,
it is not clear that you can verify that the solution is correct, at least not
unless you can solve DL. You would need to decide if, for given a®, a?, a®, it
holds that ¢ = ab mod ¢. This seems to require that you solve DL (although
it is NOT clear that this would be necessary). This is the motivation for
defining a final related problem. The idea is that you get an instance of
the DH problem, plus an extra group element which is either a correct DH
solution, or is a random element. You are then supposed to guess which case
you are in.

The Decisional Diffie-Hellman (DDH) problem
Given a group G, generator o, and a?, a’, a¢, where a,b are randomly and



independently chosen from Z;; and where ¢ is chosen either as ¢ = ab, or
uniformly random from Z;. Now guess which of the two cases we are in.

Clearly, if you could solve DH, then you could solve DDH, by computing
a® and comparing this to a. So we have:

LEMMA 2 The DDH problem is no harder than the DH problem.

There are no types of groups known (other than trivial cases) for which we
can show that DDH is equivalent to DH. In fact, there are cases where DD H
is known to be easy, but DH is conjectured to be hard. In certain subgroups
of Z;, however, DL, DH and DDH all seem to be hard. In the next section,
we define more precisely what it means for these problems to be hard.

3.1 Hardness of the problems

There exist several methods by which you can efficently choose a prime p of a
particular size (bit length) that you want together with a primitive element.
We generalize this notion by assuming that we have a group generator GGen,
i.e., an efficient probabilistic algorithm which takes as input an integer k and
outputs a group GG and an element o € G that generates G. The idea is
that k controls the size of the group that is generated, and the specification
produced allows us to work in G, just as knowing p allows us to work in ZJ.

We need this kind of tool to talk about hardness of the DL, DH and DDH
problems. The point is that if, for instance, we want to work in groups of the
type Zj, it is possible to choose p is such a way that none of our problems
are hard. As an example, consider an algorithm that always outputs primes
p, where p — 1 has only small prime factors. There is an algorithm known as
Polig-Hellmann that in this case solves DL in Z efficiently (and hence also
DH and DDH). On the other hand, DL does seem to be hard, if we choose
random primes of length k. So therefore, these problems can only have the
kind of hardness we need relative to some algorithm that chooses the group
we are in .

So hardness of DL w.r.t. GGen means that if we use GGen to make an
instance of the DL problem, then any polynomial time algorithm can solve
such an instance with probability essentially 0. More formally:

IThis is more or less the same reason that is also behind the fact that it is meaningless
to talk about security of a cryptosystem without taking the algorithm for generating keys
into account



DEFINITION 1 Consider the following experiment with an algorithm A: run
GGen on input k to get G and o. Choose a at random in Z;, and give A
input G, a, «*. The DL problem is said to be hard (with respect to GGen)
if for any polynomial (in k) time algorithm A, the probability that A outputs
a 18 negligible in k.

We can define hardness of DH and DDH in a similar way:

DEFINITION 2 Consider the following experiment with an algorithm A: run
GGen on input k to get G and . Choose a,b at random in Z;, and give
A input specification of G, «, a*, o. The DH problem is said to hard
(with respect to GGen) if for any polynomial (in k) time algorithm A, the
probability that A outputs a® is negligible in k.

DEFINITION 3 Consider the following experiment with an algorithm A: run
GGen on input k to get G and o. Choose a,b at random in Z;. Choose ¢ to
be 0 or 1, if 6 =0, set c = ab, else choose ¢ at random from Z;. Give A input
specification of G, o, a®, ab, a. A then outputs one bit, namely its quess
at whether § is 0 or 1. Now, let pao(k) be the probability that A outputs 1
when § =0, and pa1(k) be the probability that A outputs 1 when 6 = 1. The
advantage of A is defined to be

Adva(k) = [pao(k) — paa (k)]

The DDH problem is said to be hard (with respect to GGen) if for any poly-
nomial (in k) time algorithm A, Adva(k) is negligible in k.

Note that hardness of DDH is defined in much the same way we have defined
security of cryptosystems, namely it is hard for the adversary to distinguish
the “real” from the “ideal” world with non-negligible advantage.

4 The El Gamal Cryptosystem

The motivation for the DH problem is that Diffie and Hellman in 1977 sug-
gested to use it as a basis for exchanging a secret between two parties A and
B that share no secret key in advance. The method for this is very simple,
assuming that we already agreed (in public) on a group G and a generator
a:



1. A chooses s4 at random in Z;, B chooses sp at random in Z;.
2. Asends y4 = a4 to B, B sends yg = a2 to A.
3. A computes yj;' and B computes y3®

The point is of course that A and B compute the same value in the last
step, since yi' = yi® = a*4*8. Furthermore, an adversary observing the
communication would need to solve an instance of the DH problem to find
the shared value. El Gamal suggested a way to turn this idea into a regular
public key cryptosystem. What we do is essentially to consider A’s first
message in the above as a part of his public key, then B’s part of the protocol
can be modified to be an encryption:

El Gamal cryptosystem (general version)

Key generation On input security parameter k, run GGen on input k to
obtain specification of a group G and generator a. Choose a at random
from Z;. Then the public key is the specification of G and 3 = a®, while
the secret key is a. The plaintext space is G while the ciphertext space
is G x G.

Encryption To encrypt m € G, we choose r at random from Z;, and the
ciphertext is (a”, 5"m).

Decryption To decrypt ciphertext (¢, d), compute ¢~ %d.

To see that decryption works, simply plug in (a”, 3"m) for (¢, d) in the de-
cryption algorithm.

Note that there may be some difficulties in applying this scheme in prac-
tice: we have said that the plaintext space is the group G. But in real life, we
probably want to encrypt some arbitrary piece of data, given as a bit string.
It may not be clear how to consider such a string in a unique way as group
element. For Z7 this is easy, as long as the string is not too long: just think
of it as a binary number. Other cases are less obvious - we return to this
later.

Given a ciphertext (a”, f"m), it is clear that you can compute m if and
only if you can compute 3" = a*", so we have:

LEMMA 3 The problem of decrypting an El Gamal ciphertext (without the
secret key) is equivalent to solving the DH problem.

5



However, this does not say much about the semantic security of El Gamal:
even if it is hard to compute the entire plaintext, we may be able to compute
partial information about it. However, if DDH is hard, then even you are
given o, %, ", it is infeasible to distinguish a"® from a random element. This
means that for all you care, the last part of the ciphertext that determines
m (namely o"*m), might as well have been a random element — which would
contain no information on m. So in this case, we can expect to have semantic
security. More formally:

THEOREM 1 If the DDH problem is hard (w.r.t. GGen), then the El Gamal
cryptosystem is semantically secure.

Exercise 1 Prove this result. Hint: do it by contradiction. Assume that
there exists some adversary Adv that can play the semantic security game
and have advantage at least e. Use him to construct an algorithm that solves
DDH with advantage at least e. Then, if Adv is polynomial time and € is not
negligible, DDH cannot be hard, and so such an Adv cannot exist.

There are also results about El Gamal similar to what is known for RSA:
Exercise 2 RSA is multiplicative, i.e. the product of two encryptions is an
encryption of the product of the messages. Formulate and prove a similar
property for EL. Gamal encryption. Use this to prove the following: given an
algorithm A which on input a public El Gamal key pk = (G, «, ) and a ran-
dom ciphertext, outputs the correct plaintext with probability e. Construct
an algorithm which on input pk and any fized ciphertext (c,d), decrypts it
correctly with probability e.

5 Some Example Groups

5.1 7

These are probably the most well-known examples. For this kind of group,
a natural candidate for the GGen algorithm would be: On input k, choose a
random k-bit prime p and an arbitrary generator a € Z;. Choosing a random
k-bit prime is something that is well-known from RSA key generation. As
for finding a generator, it turns out that there are so many generators, that
it will work fine to simply choose random candidates for a until we find a
generator. Moreover, if we know the factorization of p — 1, we can recognize
a generator when we see one:



LEMMA 4 « € Z; is a generator if and only if P14 L 1 for every prime
q that divides p — 1.

Fortunately, there are methods for building random primes p in such a way
that we also know the factorization of p — 1. Details of this are out of scope
for this note.

Unfortunately, however, if we use G = Z; in El Gamal, we will never get
a semantically secure cryptosystem. To see this, we need the following basic
fact:

LEMMA 5 Let o be a generator of Z. Then (o/)P~)/2 mod p = 1 if and
only if i is even, and is -1 otherwise.

PROOF. Clearly ((o!)®P~1/2)2 = (a#)P~! = 1 mod p, which implies that
(a®)P=1)/2 is 1 or -1 — this follows since Z, is a field, and so the quadratic
equation X2 = 1 mod p can have at most 2 solutions. If i = 2j, then
()12 = (o%)P=D/2 = (o7)~) = 1 mod p. This gives (p — 1)/2 el-
ements of Z, that are solutions to X@®-1/2 = 1 mod p. Again since Zy is

a field, there can be no more, so for all the odd values of ¢, we must have
(@))P=1/2 mod p = —1. JAN

This implies:

LEMMA 6 In the group Z;, the DDH problem is never hard

PROOF. The adversary is given a, a®, a®, a¢. By the above, he can easily

compute parity of a, b, i.e., whether a, b are even or odd, and hence the parity
of ab. He can also find the parity of c. Of course, if ¢ = ab, these two parities
always match, whereas if ¢ is randomly and indpendently chosen, they will
match with probability 1/2. So the adversary compares the parities of ab
and ¢ and if they are equal he guesses that he is in case ab = ¢, otherwise he
guesses that ¢ was random. Clearly, his advantage is 1 — 1/2 = 1/2 which
certainly is not negligible. A

5.2 Prime Order Subgroups of Z;

To obtain semantic security, we need to use, instead of Z}, a subgroup of
large prime order. The reason for this is that the problem we spotted before
with the DDH problem really comes from the fact that the order of the group
we had (p — 1) was divisible by a very small prime, namely 2. This means

7



that by raising elements to the power (p—1)/2, we can “squeeze” things into
a very small subgroup (consisting of 1 and -1) where DDH is not hard to
handle.

Now, for every prime ¢ that divides p — 1, there is exactly one subgroup
G of order ¢, and if ag generates all of Z, then a = ol V4 generates
this subgroup. This follows, sinply from the fact that there are ¢ different

multiples i% of % between 0 and p — 1, and so G simply consists of the
elements {a!, a2, ..., a%} = {al7™9, ad® /0 _ alP V).

This leads to the following algorithm for generating G and «:

1. On input k, use known methods to generate a k-bit prime p with known
factorization of p — 1, and generator oy of Z.

2. Let ¢ be the largest plzime factor in p — 1. Let G be the subgroup of
p

order ¢, and set o = qy —b/a, Output p, ¢, a.

Then we can use general El Gamal, with these choices of G, a. There is one
problem, however: in practice, we want to encrypt some bit string str. The
plaintext space is really G, and it consists of only some of the numbers in
Z5. So we cannot just interpret str as a binary number modulo p, most of
the time, it will not be in G. The simplest way to solve this problem is to
generate primes p of special form, so called safe primes. These are primes
of form p = 2¢q + 1, where ¢ is also prime. With such a prime, the following
encoding enables us to encrypt any number in Z,. It provides a way to map
efficiently and 1-1 from Z, to G"

e On input = € Z,, set y = x + 1 and compute y»~V/2 mod p. If this is
1, output y, else output —y mod p.

When we decrypt, we get an element in G, and we can then bring this back
to Z, as follows:

e On input g € G C Z, test if g < ¢. If so, set y = g, else set
y = —g mod p. Output y — 1.

Exercise 3 Prove that when p = 2¢q + 1, the subgroup G of order ¢ in Z;
consists of all even powers of a. Use this and Lemma 5 to prove that the
above encoding method works, i.e., the mapping introduced is 1-1, and maps
to the subgroup G.



5.3 Other Examples

As G, we can also use the multiplicative group in some finite field, or (more
interesting) Elliptice Curve groups. The interesting point about them is that
only generic algorithms are known to solve DL in these groups. Such groups
are typically constructed from a prime p, and it is known that the group
you get has order approximately p. This means that a generic algorithm
will need to do approximately ,/p group operations to solve DL (or DH),
which implies that p should be a 200-300 bit prime with current state of
the art. This compares favorably with the 1000 or more bits one would
need if we used Z directly, so that keys can be shorter, and (in some cases)
the encryption/decryption faster. On the other hand, the key generation is
considerably more complex.

An interesting special case of elliptic curve groups are those constructed
from so called supersingular curves. The groups we get from these curves are
special in that, while the DL and DH problems are believed to be hard in these
groups, when their order are around 2'°°°, the DDH problem is easy. It turns
out to be possible to use this property for many interesting cryptographic
constructions, although of course standard El-Gamal encryption is no good
here.



